We investigate the strong electromagnetic coupling that settles in dual metallic grating structures. This coupling is evidenced to lead to a perfect optical extinction in the transmission spectrum. The behavior of this perfect extinction that strongly depends on the longitudinal space and the lateral displacement between the two gratings can be explained by a simple model that describes the interference between a propagating mode and a couple of evanescent modes. The results show that the electromagnetic transmission of the structure can be tuned by controlling the position of this perfect transmission extinction and thus pave the way to new types of infrared tunable filters.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.36.003160DOI Listing

Publication Analysis

Top Keywords

perfect extinction
8
dual metallic
8
perfect
4
extinction subwavelength
4
subwavelength dual
4
metallic transmitting
4
transmitting gratings
4
gratings investigate
4
investigate strong
4
strong electromagnetic
4

Similar Publications

In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.

View Article and Find Full Text PDF

The proof-of-concept of the exploitation of Coherent Perfect Absorption (CPA) in electrically-injected distributed-feedback laser sources is reported. Capitalizing on the essence of CPA as "light extinction by light", an integrated laser-modulator scheme emerges. The key ingredient compared to conventional single-frequency laser diodes is a careful periodic in-phase modulation of both real and imaginary parts of the complex grating index profile that enables both single-frequency operation and 40 dB line purity at the Bragg frequency.

View Article and Find Full Text PDF

Global risk assessment of sharks to climate change.

Sci Total Environ

December 2024

MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Portugal, Cascais, Portugal; Sphyrna Association, Boa Vista Island, Sal Rei, Cabo Verde; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Portugal, Cascais, Portugal; School of Geography and the Environment, University of Oxford, Oxford, UK.

In what has been referred to as a 'perfect storm', it is now clear that we will be concurrently facing both a biodiversity and climate crisis over the incoming decades. In this context, we propose a broadly applicable framework to evaluate the climate-associated risk for marine life at the species-level, based on the ecosystem-level assessment developed by the Intergovernmental Panel on Climate Change (IPCC). We apply this framework to extant marine shark species - given their major ecological and socioeconomic importance, alongside their precarious conservation status -at the global scale.

View Article and Find Full Text PDF

Coal seam spontaneous combustion fire is not only one of the main forms of the five major mine disasters, but also the main cause of secondary disasters such as mine gas and coal dust explosions. In recent years, with the advancement of mechanization, automation, and intelligent mine construction, spontaneous coal fires in mines have presented a series of new characteristics, and the prevention and control of spontaneous coal fires are also facing new challenges. On the basis of literature research, this paper summarizes and discusses the basic theory of coal spontaneous combustion, monitoring and early warning methods, and prevention and control technology, summarizes the development process of coal spontaneous combustion theory, reviews the research progress of coal spontaneous combustion monitoring and early warning methods and prevention and control technologies, and discusses the future development direction.

View Article and Find Full Text PDF

In the dairy industry bacteriophage (phage) contamination significantly impairs the production and quality of products like yogurt and cheese. To combat this issue, the strains of bacteria used as starter cultures possess mechanisms that make them resistant to phage infection, such as envelope resistance, or processes that render them immune to phage infection, such as restriction-modification and CRISPR-Cas. Lactococcus lactis, used to manufacture cheese and other dairy products, can also block the reproduction of infecting phages by abortive infection (Abi), a process in which phage-infected cells die before the phage replicate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!