In this Letter we present results of theoretical and experimental studies of whispering-gallery modes in optical microdisk resonators interacting with subwavelength dielectric particles. We predict theoretically and confirm by direct observations that, contrary to the generally accepted models, both peaks of the particle-induced doublet of resonances are redshifted with respect to the position of the initial resonance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.36.003154 | DOI Listing |
Nanophotonics
July 2024
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
Despite their excellent performance and versatility, the efficient integration of small lasers with other optical devices has long been hindered by their broad emission divergence. In this study, we introduce a novel approach for emission engineering in microdisk lasers, significantly enhancing their vertical emission output by directly integrating specially designed reflective metalenses, referred to as "meta-micromirrors". A 5 μm-diameter microdisk laser is precisely positioned at an 8 μm focal distance on a 30 × 30 μm meta-micromirror featuring a numerical aperture (NA) of 0.
View Article and Find Full Text PDFNat Commun
December 2024
Peter Gruenberg Institute 9 (PGI-9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, 52428, Juelich, Germany.
Over the last 30 years, group-IV semiconductors have been intensely investigated in the quest for a fundamental direct bandgap semiconductor that could yield the last missing piece of the Si Photonics toolbox: a continuous-wave Si-based laser. Along this path, it has been demonstrated that the electronic band structure of the GeSn/SiGeSn heterostructures can be tuned into a direct bandgap quantum structure providing optical gain for lasing. In this paper, we present a versatile electrically pumped, continuous-wave laser emitting at a near-infrared wavelength of 2.
View Article and Find Full Text PDFTantalum pentoxide (TaO) is widely recognized as a promising material platform for photonic integration. This is primarily attributed to its exceptional properties including large bandgap of 3.8 eV, broad transparency window ranging from 300 nm to 8000 nm, high nonlinear refractive index of ∼7.
View Article and Find Full Text PDFChem Commun (Camb)
November 2024
Beijing Institute of Technology, Zhuhai Beijing Institute of Technology (BIT), 519088 Zhuhai, China.
Light Sci Appl
September 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Cavity optomechanical systems have enabled precision sensing of magnetic fields, by leveraging the optical resonance-enhanced readout and mechanical resonance-enhanced response. Previous studies have successfully achieved mass-produced and reproducible microcavity optomechanical magnetometry (MCOM) by incorporating Terfenol-D thin films into high-quality (Q) factor whispering gallery mode (WGM) microcavities. However, the sensitivity was limited to 585 pT Hz, over 20 times inferior to those using Terfenol-D particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!