Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate numerically the impact of some higher-order effects, namely, self-frequency shift, self-steepening, and third-order dispersion, on the erupting soliton solutions of the quintic complex Ginzburg-Landau equation. We consider particularly the impact of these higher-order effects in the spectral domain from which we can describe the pulse characteristics in the time domain. These effects can filter in different ways the spectral perturbations that contribute to pulse explosions. We show that a proper combination of the three higher-order effects can provide a filtering of the spectral perturbations in such a way that a stable fixed-shape pulse propagation is achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.36.003085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!