Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCEP.111.962092 | DOI Listing |
Natl Sci Rev
January 2025
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI via pressure, accompanied by a substantial improvement in their photoelectric properties.
View Article and Find Full Text PDFNano Lett
January 2025
Tata Institute of Fundamental Research-Hyderabad, Sy No. 36/P Serilingampally Mandal, Hyderabad 500046, India.
Does light or heat play a seminal role in photo-rechargeable batteries? This study unravels the effects of light in the exciton formation and separation processes in a photocathode, leading to the charging or de-intercalation of Li ions in a lithium-ion battery. Light induced oxidation of Ti to Ti in the Li(TiS-TiO) heterostructure cathode is shown here, while heating does not elicit such changes. With the aid of photogenerated electrons at the cathode, the de-lithiated Li ions from Li(TiS-TiO) get intercalated in the graphite anode during the photocharging process.
View Article and Find Full Text PDFHeliyon
January 2025
Center for MicroElectromechanical Systems (CMEMS), University of Minho, Guimarães, 4800-058, Portugal.
Recently, Organ-on-a-Chip (OoC) platforms have arisen as an increasingly relevant experimental tool for successfully replicating human physiology and disease. However, there is a lack of a standard technology to monitor the OoC parameters, especially in a non-invasive and label-free way. Photoacoustic (PA) systems can be considered an alternative and accurate assessment method for OoC platforms.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Structural Analysis for Industrial Equipment & School of Physics, Dalian University of Technology, Dalian 116024 People's Republic of China.
A sumanene monolayer, with a Kagome-like lattice and two flat bands and two Dirac cones in the band structures, can be atomically assembled by C clusters. In this paper, first-principles simulations indicate surface charge doping can purposely shift the Fermi level between Dirac cones and flat bands. Interestingly, Li/Na/K atoms can be well distributed in bowl-like structures, transforming the semiconducting sumanene monolayer into a semimetal by shifting the Fermi energy exactly to the Dirac cone.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea.
Improving the interface characteristics between the hole-transport layer (HTL) and perovskite absorber layer is crucial for achieving maximum efficiency in inverted perovskite solar cells (PSCs). This paper presents an effective functional compensation layer (FCL) composed of benzothiophene derivatives, particularly 5-(trifluoromethyl)-1-benzothiophene-2-carboxylic acid (TFMBTA); this layer is introduced between the MeO-2PACz HTL and perovskite absorber layer to improve the interfacial characteristics between them. This FCL improves charge transfer, hole extraction, and perovskite deposition by improving the surface morphology of the HTL and optimizing the energy level alignment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!