Background Aims: Adipose tissue (AT)-derived mesenchymal stromal cells (MSC) (AT-MSC) represent a novel tool for delivering therapeutic genes to tumor cells. Interferon (IFN)-β is a cytokine with pleiotropic cellular functions, including anti-proliferative, immunomodulatory and anti-angiogenic activities. The purpose of this study was to engineer canine AT-MSC (cAT-MSC) producing IFN-β and to evaluate the anti-tumor effect of cAT-MSC-IFN-β combined with cisplatin in mouse melanoma model.

Methods: cAT-MSC engineered to express mouse IFN-β were generated using a lentiviral vector (cAT-MSC-IFN-β) and the secreted IFN-β-induced inhibition of tumor cell growth and apoptosis on B16F10 cells was investigated in vitro prior to in vivo studies. Melanoma-bearing mouse was developed by injecting B16F10 cells subcutaneously into 6-week-old C57BL/6 mice. After 14 days, cisplatin (10 mg/kg) was injected intratumorally, and 3 days later the engineered cAT-MSC were injected subcutaneously every 3 days to death. Tumor volume and survival times were measured.

Results: The combination treatment of cAT-MSC-IFN-β with cisplatin was more effective in inhibiting the growth of melanoma and resulted in significantly extended survival time than both an unengineered cAT-MSC-cisplatin combination group and a cisplatin-alone group. Interestingly, subcutaneously injected cAT-MSC-IFN-β were migrated to tumor sites.

Conclusions: Our data suggest that canine AT-MSC could serve as a powerful cell-based delivery vehicle for releasing therapeutic proteins to tumor lesions. Maximal anti-tumor effects were seen when this therapy was combined with a DNA-damaging chemotherapeutic agent. This study demonstrates the possible applicability of AT-MSC-mediated IFN-β in treating canine and human cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.3109/14653249.2011.584864DOI Listing

Publication Analysis

Top Keywords

anti-tumor effects
8
mesenchymal stromal
8
cisplatin mouse
8
mouse melanoma
8
canine at-msc
8
b16f10 cells
8
tumor
5
canine
4
effects canine
4
canine adipose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!