We report the first demonstration of comprehensive two-dimensional gas chromatography combustion-isotope ratio mass spectrometry (GC×GCC-IRMS) for the analysis of urinary steroids to detect illicit synthetic testosterone use, of interest in sport doping. GC coupled to IRMS (GCC-IRMS) is currently used to measure the carbon isotope ratios (CIRs, δ(13)C) of urinary steroids in antidoping efforts; however, extensive cleanup of urine extracts is required prior to analysis to enable baseline separation of target steroids. With its greater separation capabilities, GC×GC has the potential to reduce sample preparation requirements and enable CIR analysis of minimally processed urine extracts. Challenges addressed include online reactors with minimized dimensions to retain narrow peak shapes, baseline separation of peaks in some cases, and reconstruction of isotopic information from sliced steroid chromatographic peaks. Difficulties remaining include long-term robustness of online reactors and urine matrix effects that preclude baseline separation and isotopic analysis of low-concentration and trace components. In this work, steroids were extracted, acetylated, and analyzed using a refined, home-built GC×GCC-IRMS system. 11-Hydroxyandrosterone and 11-ketoetiocolanolone were chosen as endogenous reference compounds because of their satisfactory signal intensity, and their CIR was compared to target compounds androsterone and etiocholanolone. Separately, a GC×GC-quadrupole MS system was used to measure testosterone (T)/epitestosterone (EpiT) concentration ratios. Urinary extracts of urine pooled from professional athletes and urine from one individual that received testosterone gel (T-gel) and one individual that received testosterone injections (T-shots) were analyzed. The average precisions of δ(13)C and Δδ(13)C measurements were SD(δ(13)C) approximately ±1‰ (n = 11). The T-shot sample resulted in a positive for T use with a T/EpiT ratio of >9 and CIR measurements of Δδ(13)C > 5‰, both fulfilling World Anti-Doping Agency criteria. These data show for the first time that synthetic steroid use is detectable by GC×GCC-IRMS without the need for extensive urine cleanup.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176586PMC
http://dx.doi.org/10.1021/ac2015849DOI Listing

Publication Analysis

Top Keywords

baseline separation
12
synthetic testosterone
8
comprehensive two-dimensional
8
two-dimensional gas
8
gas chromatography
8
chromatography combustion-isotope
8
combustion-isotope ratio
8
ratio mass
8
mass spectrometry
8
urinary steroids
8

Similar Publications

Background: Tendon repairs often result in adhesion formation which can cause persisting functional deficits. Close proximity of healing tissues increases friction during tendon excursion, often leading to tendon tethering postoperatively. Despite continued improvements in techniques for tendon repairs, there is currently no consensus on the most effective modality to reduce adhesion formation.

View Article and Find Full Text PDF

Purpose: Black adolescents in the United States face disproportionate poor nutrition and obesity risk due to racism. Intersections of larger structural contexts that pose differential access to Black adolescents' health resources, such as state-level racism and neighborhood-level disadvantage, may govern these risks. The purpose of this correlational study was to examine the associations between state-level racism, neighborhood disadvantage, and their intersection with nutrition and obesity for Black adolescents in a longitudinal study.

View Article and Find Full Text PDF

Background: Lipoprotein fractions are reported to be unstable in stored human samples, and there is a paucity of information on the analytical precision of electrophoretic separation of lipoproteins in canine serum samples.

Objective: The aim of this study was to assess the effects of intra- and inter-assay imprecision and of storage conditions on the electrophoretic separation of canine lipoproteins.

Methods: Imprecision was assessed by calculating the coefficient of variation (CV) of five replicates of six serum samples run in two sequential runs of agarose gel lipoprotein electrophoresis.

View Article and Find Full Text PDF

Heterophilous distribution propagation for Graph Neural Networks.

Neural Netw

December 2024

College of Computer Science, Zhejiang University, Hangzhou, 310027, China; Zhejiang Key Laboratory of Accessible Perception and Intelligent Systems, Zhejiang University, Hangzhou, 310027, China. Electronic address:

Graph Neural Networks (GNNs) have achieved remarkable success in various graph mining tasks by aggregating information from neighborhoods for representation learning. The success relies on the homophily assumption that nearby nodes exhibit similar behaviors, while it may be violated in many real-world graphs. Recently, heterophilous graph neural networks (HeterGNNs) have attracted increasing attention by modifying the neural message passing schema for heterophilous neighborhoods.

View Article and Find Full Text PDF

A spatial triage of at-risk conifer forests to support seed collection efforts and sustainable forestry.

J Environ Manage

December 2024

Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

At-risk conifer stands growing in hot, arid conditions at low elevations may contain the most climate change-adapted seeds needed for sustainable forestry. This study used a triage framework to identify high-priority survey areas for Pinus ponderosa (Pipo) within a large region, by intersecting an updated range map with a map of seed zones and elevation bands (SZEBs). The framework assesses place-based climate change and potential wildfire risks by rank-order across 740 potential collection units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!