The boron dipyrrin (Bodipy) chromophore was combined with either a free-base or a Zn porphyrin moiety (H(2)P and ZnP respectively), via an easy synthesis involving a cyanuric chloride bridging unit, yielding dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5). The photophysical properties of Bodipy-H(2)P (4) and Bodipy-ZnP (5) were investigated by UV-Vis absorption and emission spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The comparison of the absorption spectra and cyclic voltammograms of dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5) with those of their model compounds Bodipy, H(2)P, and ZnP shows that the spectroscopic and electrochemical properties of the constituent chromophores are essentially retained in the dyads indicating negligible interaction between them in the ground state. In addition, luminescence and transient absorption experiments show that excitation of the Bodipy unit in Bodipy-H(2)P (4) and Bodipy-ZnP (5) into its first singlet excited state results in rapid Bodipy to porphyrin energy transfer-k(4) = 2.9 × 10(10) s(-1) and k(5) = 2.2 × 10(10) s(-1) for Bodipy-H(2)P (4) and Bodipy-ZnP (5), respectively-generating the first porphyrin-based singlet excited state. The porphyrin-based singlet excited states give rise to fluorescence or undergo intersystem crossing to the corresponding triplet excited states. The title complexes could also be used as precursors for further substitution on the third chlorine atom on the cyanuric acid moiety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic201052k | DOI Listing |
Chemistry
January 2021
Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Tehsil: Kishangarh, Dist. Ajmer, Rajasthan, 305817, India.
A panchromatic triad, consisting of benzothiazole (BTZ) and BF -chelated boron-dipyrromethene (BODIPY) moieties covalently linked to a zinc porphyrin (ZnP) core, has been synthesized and systematically characterized by using H NMR spectroscopy, ESI-MS, UV-visible, steady-state fluorescence, electrochemical, and femtosecond transient absorption techniques. The absorption band of the triad, BTZ-BODIPY-ZnP, and dyads, BTZ-BODIPY and BODIPY-ZnP, along with the reference compounds BTZ-OMe, BODIPY-OMe, and ZnP-OMe exhibited characteristic bands corresponding to individual chromophores. Electrochemical measurements on BTZ-BODIPY-ZnP exhibited redox behavior similar to that of the reference compounds.
View Article and Find Full Text PDFInorg Chem
September 2011
Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, Voutes Campus, P.O. Box 2208, 71003 Heraklion, Crete, Greece.
The boron dipyrrin (Bodipy) chromophore was combined with either a free-base or a Zn porphyrin moiety (H(2)P and ZnP respectively), via an easy synthesis involving a cyanuric chloride bridging unit, yielding dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5). The photophysical properties of Bodipy-H(2)P (4) and Bodipy-ZnP (5) were investigated by UV-Vis absorption and emission spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The comparison of the absorption spectra and cyclic voltammograms of dyads Bodipy-H(2)P (4) and Bodipy-ZnP (5) with those of their model compounds Bodipy, H(2)P, and ZnP shows that the spectroscopic and electrochemical properties of the constituent chromophores are essentially retained in the dyads indicating negligible interaction between them in the ground state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!