Neuronal and axonal degenerative changes in motor vagal neurons (DMNV) and sensory vagal neurons (nTS) in the medulla oblongata in newborns were studied. Material was taken from the autopsies of newborns, live and dead newborns, in different gestational weeks (aborted, immature, premature and mature). 46 cases were studied. Material for research was taken from the medulla oblongata and lung tissue. Serial horizontal incisions were made in the medulla oblongata (± 4 mm), commencing from the obex, where the DMNV and nTS vagal nuclei were explored. Fixed cuttings in buffered formalin (10%) were used for histochemical staining. Serial cuttings were done with a microtome (7 µm). Pulmonary infections, being significant (p < 0.05), have an important place when studying respiratory distress (RD) in newborns. Morphological changes of nerve cells in DMNV and nTS nuclei in the medulla oblongata in newborns in different gestational weeks are more emphasized in matures in comparison to aborted and immature (p < 0.05). Depending on the lifetime of dead newborns, neuronal morphological changes in vagus nerve nuclei are significant (p < 0.05). Therefore, it can be concluded that pulmonary infections are often caused due to dramatic respiratory distress in newborns, while hypoxaemic changes in the population of vagus nerve neurons in respiratory distress are more emphasized in matures.

Download full-text PDF

Source

Publication Analysis

Top Keywords

medulla oblongata
20
respiratory distress
16
oblongata newborns
12
vagal nuclei
8
nuclei medulla
8
newborns
8
vagal neurons
8
studied material
8
dead newborns
8
newborns gestational
8

Similar Publications

3D-printed suction clamps for tensile testing of brain tissue.

J Mech Behav Biomed Mater

December 2024

Department of Oral Rehabilitation, University of Otago, 310 Great King Street North, Dunedin, New Zealand.

The conventional mounting of ultra-soft biological tissues often involves gluing it between two plates or manually tightening grips. Both methods demand delicate handling skills and are time-consuming. This study outlines the design and practical application of 3D-printed suction clamps for uniaxial tension tests on brain samples.

View Article and Find Full Text PDF

Aged mice show a reduction in 5-HT neurons and decreased cellular activation in the dentate gyrus when exposed to acute running.

Brain Struct Funct

December 2024

Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.

Serotonin (5-HT) is an important neurotransmitter for cognition and neurogenesis in the dentate gyrus (DG), which occurs via movement stimulation such as physical activity. Brain 5-HT function changes secondary to aging require further investigation. We evaluated whether aged animals would present changes in the number of 5-HT neurons in regions such as the dorsal (DRN) and median (MRN) raphe nuclei and possible changes in the rate of cellular activation in the DG in response to acute running, as a reduction in 5-HT neurons could contribute to a decline in neuronal activation in the DG in response to physical activity in aged mice.

View Article and Find Full Text PDF

The Inferior Cerebellar Peduncle Sign: A Novel Imaging Marker for Differentiating Multiple System Atrophy Cerebellar Type from Spinocerebellar Ataxia.

AJNR Am J Neuroradiol

December 2024

From the Department of Radiology and Center for Imaging Science (C.Y.L., Y.S., B.S., M.S., S.T.K., E.Y.K.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Digital Health (S.H.), Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea; Medical AI Research Center, Research Institute for Future Medicine (S.H.), Samsung Medical Center, Seoul, Republic of Korea; Department of Neurology (J.Y.), Neuroscience Center (J.Y.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

Background And Purpose: The hot cross bun (HCB) sign is a hallmark feature of multiple system atrophy with predominant cerebellar ataxia (MSA-C), typically observed in advanced stages of the disease; however, it can also present in other conditions such as spinocerebellar ataxia (SCA), making the differentiation challenging. The middle cerebellar peduncle (MCP) sign may be observed in various medical conditions and in healthy individuals. We hypothesized that the inferior cerebellar peduncle (ICP), known to be affected in MSA-C, may exhibit hyperintensity on fluid-attenuated inversion recovery (FLAIR) imaging, potentially aiding in differentiating MSA-C from SCA.

View Article and Find Full Text PDF

Large-scale brainstem neuroimaging and genetic analyses provide new insights into the neuronal mechanisms of hypertension.

HGG Adv

December 2024

Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway.

While brainstem regions are central regulators of blood pressure, the neuronal mechanisms underlying their role in hypertension remain poorly understood. Here, we investigated the structural and genetic relationships between global and regional brainstem volumes and blood pressure. We used magnetic resonance imaging data from n = 32,666 UK Biobank participants, and assessed the association of volumes of the whole brainstem and its main regions with blood pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!