Mathematical aspects of molecular replacement. I. Algebraic properties of motion spaces.

Acta Crystallogr A

Department of Mechanical Engineering, Johns Hopkins University, 223 Latrobe Hall, 3400 N. Charles Street, Baltimore, Maryland, MD 21218, USA.

Published: September 2011

Molecular replacement (MR) is a well established method for phasing of X-ray diffraction patterns for crystals composed of biological macromolecules of known chemical structure but unknown conformation. In MR, the starting point is known structural domains that are presumed to be similar in shape to those in the macromolecular structure which is to be determined. A search is then performed over positions and orientations of the known domains within a model of the crystallographic asymmetric unit so as to best match a computed diffraction pattern with experimental data. Unlike continuous rigid-body motions in Euclidean space and the discrete crystallographic space groups, the set of motions over which molecular replacement searches are performed does not form a group under the operation of composition, which is shown here to lack the associative property. However, the set of rigid-body motions in the asymmetric unit forms another mathematical structure called a quasigroup, which can be identified with right-coset spaces of the full group of rigid-body motions with respect to the chiral space group of the macromolecular crystal. The algebraic properties of this space of motions are articulated here.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171898PMC
http://dx.doi.org/10.1107/S0108767311021003DOI Listing

Publication Analysis

Top Keywords

molecular replacement
12
rigid-body motions
12
algebraic properties
8
asymmetric unit
8
motions
5
mathematical aspects
4
aspects molecular
4
replacement algebraic
4
properties motion
4
motion spaces
4

Similar Publications

In this paper, a series of novel quinazoline-4(3)-one-2-carbothioamide derivatives (8a-p) were designed and synthesized the Wilgerodt-Kindler reaction between 2-methylquinazoline-4-one 10 and amines using S/DMSO as the oxidizing system. Their characteristics were confirmed by IR, NMR, HRMS spectra, and their melting point. These novel derivatives (8a-p) were evaluated for their anti-inflammatory activity by inhibiting NO production in lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Stem cells (neoblasts) and positional information jointly dominate regeneration in planarians.

Heliyon

January 2025

Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 45000, China.

Regeneration is the ability to accurately regrow missing body parts. The unparalleled regenerative capacity and incredible tissue plasticity of planarians, both resulting from the presence of abundant adult stem cells referred to as neoblasts, offer a unique opportunity to investigate the cellular and molecular principles underlying regeneration. Neoblasts are capable of self-renewal and differentiation into the desired cell types for correct replacement of lost parts after tissue damage.

View Article and Find Full Text PDF

Objective: The aim of this study was to characterize the parameters of reproductive anatomy and pituitary hormone expression levels in ames dwarf mice ).

Materials And Methods: Male mice aged 30 days received daily intraperitoneal injections of recombinant human GH and levothyroxine three times weekly for 60 days. The sexual maturation of these animals was compared with that of their wild-type ( ) and untreated ( ) siblings.

View Article and Find Full Text PDF

The odontoclast is a rarely studied cell type that is overly active in many dental pathologies, leading to tooth loss. It is difficult to find diphyodont mammals in which either physiological or pathological root resorption can be studied. Here we use the adult leopard gecko, which has repeated cycles of physiological tooth resorption and shedding.

View Article and Find Full Text PDF

Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!