Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite its bright prospects, graphene faces challenges including issues concerning mass production. Here we present a totally green approach whereby common crystal graphite can be exfoliated into graphene sheets in aqueous solution by jet cavitation. This is possible mainly because the tensile stress caused by graphite-solution interfacial reflection of compressive waves acts an intensive 'suction disk' on the graphite flakes. We confirm the presence of graphene sheets by diverse characterizations. The graphene yield by our method is estimated as ∼ 4 wt%, which could potentially be improved by further processing. The method, of a mechanical nature, is powerful compared to the traditional low-throughput micromechanical cleavage. Our work here illustrates jet cavitation as a facile, low cost, timesaving and laborsaving route, which can potentially be scaled up to mass production of graphene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/22/36/365306 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!