The discrete Radon transform (DRT) was defined by Abervuch as an analog of the continuous Radon transform for discrete data. Both the DRT and its inverse are computable in O(n(2) log n) operations for images of size n × n. In this paper, we demonstrate the applicability of the inverse DRT for the reconstruction of a 2-D object from its continuous projections. The DRT and its inverse are shown to model accurately the continuum as the number of samples increases. Numerical results for the reconstruction from parallel projections are presented. We also show that the inverse DRT can be used for reconstruction from fan-beam projections with equispaced detectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2011.2164416 | DOI Listing |
Phys Med Biol
January 2025
CREATIS, INSA de Lyon, Bâtiment Blaise Pascal, 7 Avenue Jean Capelle, Villeurbanne, 69621 Cedex , FRANCE.
Compton cameras are imaging devices that may improve observation of sources of γ photons. We present CoReSi, a Compton Reconstruction and Simulation software implemented in Python and powered by PyTorch to leverage multi-threading and for easy interfacing with image processing and deep learning algorithms. The code is mainly dedicated to medical imaging and for near-field experiments where the images are reconstructed in 3D.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China.
The propagation speed of a shear wave, whether externally or internally induced, in biological tissues is directly linked to the tissue's stiffness. The group shear wave speed (SWS) can be estimated using a class of time-of-flight (TOF) methods in the time-domain or phase speed-based methods in the frequency domain. However, these methods suffer from biased estimations or time-consuming computations, and they are especially prone to wave distortions incases.
View Article and Find Full Text PDFEntropy (Basel)
October 2024
Faculty of Physics, Department of Mathematical Methods in Physics, University of Białystok, ul. Ciołkowskiego 1L, 15-245 Białystok, Poland.
The concept of risk is fundamental in various scientific fields, including physics, biology and engineering, and is crucial for the study of complex systems, especially financial markets. In our research, we introduce a novel risk model that has a natural transactional-financial interpretation. In our approach, the risk of holding a financial instrument is related to the measure of the possibility of its loss.
View Article and Find Full Text PDFEpilepsy Curr
May 2024
Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
Seizure detection is vital for managing epilepsy as seizures can lead to injury and even death, in addition to impacting quality of life. Prompt detection of seizures and intervention can help prevent injury and improve outcomes for individuals with epilepsy. Wearable sensors show promising results for automated detection of certain seizures, but they have limitations such as patient tolerance, impracticality for newborns, and the need for recharging.
View Article and Find Full Text PDFFront Med (Lausanne)
October 2024
Section of Neurobiology of the Eye, Institute for Ophthalmic Research, Tuebingen, Germany.
Visual deprivation causes enhanced eye growth and the development of myopia, which is associated with a change in the arrangement of collagen fibers within the sclera. A second harmonic generation (SHG) microscope has been used to image the collagen fibers of unstained scleral punches from the posterior part of chicken eyes. We aimed to analyze the fibrous scleral tissue and quantify the changes in collagen organization in relation to the extent of induced deprivation myopia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!