Deep learning regularized Fisher mappings.

IEEE Trans Neural Netw

Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong.

Published: October 2011

For classification tasks, it is always desirable to extract features that are most effective for preserving class separability. In this brief, we propose a new feature extraction method called regularized deep Fisher mapping (RDFM), which learns an explicit mapping from the sample space to the feature space using a deep neural network to enhance the separability of features according to the Fisher criterion. Compared to kernel methods, the deep neural network is a deep and nonlocal learning architecture, and therefore exhibits more powerful ability to learn the nature of highly variable datasets from fewer samples. To eliminate the side effects of overfitting brought about by the large capacity of powerful learners, regularizers are applied in the learning procedure of RDFM. RDFM is evaluated in various types of datasets, and the results reveal that it is necessary to apply unsupervised regularization in the fine-tuning phase of deep learning. Thus, for very flexible models, the optimal Fisher feature extractor may be a balance between discriminative ability and descriptive ability.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNN.2011.2162429DOI Listing

Publication Analysis

Top Keywords

deep learning
8
deep neural
8
neural network
8
deep
6
learning regularized
4
fisher
4
regularized fisher
4
fisher mappings
4
mappings classification
4
classification tasks
4

Similar Publications

Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records.

Int J Med Inform

January 2025

Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:

Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.

View Article and Find Full Text PDF

Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.

Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.

View Article and Find Full Text PDF

A multicenter study of neurofibromatosis type 1 utilizing deep learning for whole body tumor identification.

NPJ Digit Med

January 2025

Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.

Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!