Background: The study was conducted to confirm the mechanism of action of the Adiana permanent contraception device by means of histologic analysis of long-term specimens.

Study Design: Fifteen specimens were obtained from eight subjects undergoing hysterectomy 2 to 4 years after the Adiana procedure. Serial sections were stained with hematoxylin and eosin, as well as epithelial membrane antigen immunostain.

Results: A normal foreign body reaction with minimal chronic inflammatory changes was observed in all specimens. Immunostaining for epithelial membrane antigen was absent in the interstitial tissue surrounding the matrix.

Conclusion: Histologic analysis of long-term specimens supports the mechanism of action of the Adiana permanent contraception device.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.contraception.2011.01.008DOI Listing

Publication Analysis

Top Keywords

mechanism action
12
device histologic
8
action adiana
8
adiana permanent
8
permanent contraception
8
contraception device
8
histologic analysis
8
analysis long-term
8
epithelial membrane
8
membrane antigen
8

Similar Publications

(1) Background and aim: Aloe arborescens Mill. (A. arborescens) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties.

View Article and Find Full Text PDF

The article presents theses of the resolution of the Interdisciplinary Council of Experts in Psychiatry and Neurology (Moscow, 2024) on the issue of comorbid anxiety disorders (AD) in patients with neurological pathologies. The authors highlight the high prevalence of comorbid ADs and their significant negative impact on the course of underlying diseases, such as epilepsy, pain syndromes and post-stroke conditions. Modern approaches to the diagnosis and treatment of ADs in this group of patients are discussed.

View Article and Find Full Text PDF

Chronic cerebral ischemia (CCI) is one of the most common forms of cerebrovascular disease, which affects a significant number of patients, often leading to disability, cognitive impairment and dementia. The analysis of modern data on the pathogenesis and risk factors for the development of CCI, as well as on the mechanisms of action of Mexidol on various links in the pathogenesis of CCI. A systematic search was conducted in the PubMed, MEDLINE and Google Scholar databases, on Russian and English-language sites with open access publications on the problem of CCI and on the drug Mexidol in the period from 2014 to 2024.

View Article and Find Full Text PDF

Action Potential Firing Patterns Regulate Dopamine Release via Voltage-Sensitive Dopamine D2 Autoreceptors in Mouse Striatum In Vivo.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.

Dopamine (DA) in the striatum is vital for motor and cognitive behaviors. Midbrain dopaminergic neurons generate both tonic and phasic action potential (AP) firing patterns in behavior mice. Besides AP numbers, whether and how different AP firing patterns per se modulate DA release remain largely unknown.

View Article and Find Full Text PDF

Therapeutic effect of novel drug candidate, PRG-N-01, on NF2 syndrome-related tumor.

Neuro Oncol

December 2024

Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.

Background: NF2-related schwannomatosis (NF2-SWN) is associated with multiple benign tumors in the nervous system. NF2-SWN, caused by mutations in the NF2 gene, has developed into intracranial and spinal schwannomas. Because of the high surgical risk and frequent recurrence of multiple tumors, targeted therapy is necessary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!