A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tat-enhanced delivery of metallothionein can partially prevent the development of diabetes. | LitMetric

Tat-enhanced delivery of metallothionein can partially prevent the development of diabetes.

Free Radic Biol Med

Department of Internal Medicine and Bioengineering, College of Medicine and Engineering, Hanyang University, Seoul 471-020, Korea.

Published: November 2011

Metallothioneins (MTs) are intracellular low-molecular-weight, cysteine-rich proteins with potent metal-binding and redox functions, but with limited membrane permeativity. The aim of this study was to investigate whether we could enhance delivery of MT-1 to pancreatic islets or β cells in vitro and in vivo. The second goal was to determine whether increased MT-1 could prevent cellular toxicity induced by high glucose and free fatty acids in vitro (glucolipotoxicity) and ameliorate the development of diabetes induced by streptozotocin in mice or delay the development of diabetes by improving insulin secretion and resistance in the OLETF rat model of type 2 diabetes. Expression of HIV-1 Tat-MT-1 enabled efficient delivery of MT into both INS-1 cells and rat islets. Intracellular MT activity increased in parallel with the amount of protein delivered to cells. The formation of reactive oxygen species, glucolipotoxicity, and DNA fragmentation due to streptozotocin decreased after treating pancreatic β cells with Tat-MT in vitro. Importantly, in vivo, intraperitoneal injection resulted in delivery of the Tat-MT protein to the pancreas as well as liver, muscle, and white adipose tissues. Multiple injections increased radical-scavenging activity, decreased apoptosis, and reduced endoplasmic reticulum stress in the pancreas. Treatment with Tat-MT fusion protein delayed the development of diabetes in streptozotocin-induced mice and improved insulin secretion and resistance in OLETF rats. These results suggest that in vivo transduction of Tat-MT may offer a new strategy to protect pancreatic β cells from glucolipotoxicity, may improve insulin resistance in type 2 diabetes, and may have a protective effect in preventing islet destruction in type 1 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2011.07.019DOI Listing

Publication Analysis

Top Keywords

development diabetes
16
type diabetes
12
insulin secretion
8
secretion resistance
8
resistance oletf
8
pancreatic cells
8
diabetes
7
cells
5
tat-enhanced delivery
4
delivery metallothionein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!