We previously showed that ADP-ribosylation (ADP-r) activity of ExoS, a type III secreted toxin of Pseudomonas aeruginosa, enables bacterial replication in corneal and respiratory epithelial cells and correlates with bacterial trafficking to plasma membrane blebs (bleb-niche formation). Here, we explored another type III secreted toxin, ExoY, for its impact on intracellular trafficking and survival, and for virulence in vivo using a murine corneal infection model. Chromosomal or plasmid-mediated expression of exoY in invasive P. aeruginosa (strain PAO1) enabled bacteria to form and traffic to epithelial membrane blebs in the absence of other known effectors. In contrast, plasmid expression of any of four adenylate cyclase mutant forms of exoY did not enable bleb-niche formation, and bacteria localized to perinuclear vacuoles as for effector-null mutant controls. None of the plasmid-complemented bacteria used in this study showed ADP-r activity in the absence of ExoS and ExoT. In contrast to ADP-r activity of ExoS, bleb-niche formation induced by ExoY's adenylate cyclase activity was not accompanied by enhanced intracellular replication. In vivo results showed that ExoY-adenylate cyclase activity promoted P. aeruginosa corneal virulence in susceptible mice. Together the data show that adenylate cyclase activity of P. aeruginosa ExoY, similarly to the ADP-r activity of ExoS, can mediate bleb-niche formation in epithelial cells. While this activity did not promote intracellular replication in vitro, ExoY conferred increased virulence in vivo in susceptible mice. Mechanisms for bleb-niche formation and relationships to intracellular replication and virulence in vivo require further investigation for both ExoS and ExoY.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213052PMC
http://dx.doi.org/10.1016/j.micpath.2011.08.001DOI Listing

Publication Analysis

Top Keywords

bleb-niche formation
24
adenylate cyclase
16
cyclase activity
16
adp-r activity
16
epithelial cells
12
activity exos
12
virulence in vivo
12
intracellular replication
12
activity
9
pseudomonas aeruginosa
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!