Plants are becoming commercially acceptable for recombinant protein production for human therapeutics, vaccine antigens, industrial enzymes, and nutraceuticals. Recently, significant advances in expression, protein glycosylation, and gene-to-product development time have been achieved. Safety and regulatory concerns for open-field production systems have also been addressed by using contained systems to grow transgenic plants. However, using contained systems eliminates several advantages of open-field production, such as inexpensive upstream production and scale-up costs. Upstream technological achievements have not been matched by downstream processing advancements. In the past 10 years, the most research progress was achieved in the areas of extraction and pretreatment. Extraction conditions have been optimized for numerous proteins on a case-by-case basis leading to the development of platform-dependent approaches. Pretreatment advances were made after realizing that plant extracts and homogenates have unique compositions that require distinct conditioning prior to purification. However, scientists have relied on purification methods developed for other protein production hosts with modest investments in developing novel plant purification tools. Recently, non-chromatographic purification methods, such as aqueous two-phase partitioning and membrane filtration, have been evaluated as low-cost purification alternatives to packed-bed adsorption. This paper reviews seed, leafy, and bioreactor-based platforms, highlights strategies for the primary recovery and purification of recombinant proteins, and compares process economics between systems. Lastly, the future direction and research needs for developing economically competitive recombinant proteins with commercial potential are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biotechadv.2011.07.020 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.
Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Institute of Molecular Medicine, Huaqiao University, Quanzhou, China.
Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
Background: Ribosomal protein S6 kinase 1 (p70S6K1) is a member of the AGC family of serine/threonine kinases which plays a role in various cellular processes, including protein synthesis, cell growth, and survival. Dysregulation of p70S6K1, characterized by its overexpression and/or hyperactivation, has been implicated in numerous human pathologies, particularly in several types of cancer. Therefore, generating active, recombinant p70S6K1 is critical for investigating its role in cancer biology and for developing novel diagnostic or therapeutic approaches.
View Article and Find Full Text PDFS D Med
October 2024
Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota.
Acute pericarditis, the predominant pericardial disease, often lacks a clear etiology, with 15-30% of patients experiencing recurrence, rising to 20-50% in those with prior relapses. Autoimmune mechanisms significantly contribute to recurrence, with interleukin-1 identified as a pivotal inflammatory mediator. While NSAIDs, colchicine, and steroids remain staples for acute cases, the spotlight in recurrent pericarditis management has shifted toward immunosuppressive medications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!