We derive and analyse a deterministic model for the transmission of malaria disease with mass action form of infection. Firstly, we calculate the basic reproduction number, R(0), and investigate the existence and stability of equilibria. The system is found to exhibit backward bifurcation. The implication of this occurrence is that the classical epidemiological requirement for effective eradication of malaria, R(0)<1, is no longer sufficient, even though necessary. Secondly, by using optimal control theory we derive the conditions under which it is optimal to eradicate the disease and examine the impact of a possible combined vaccination and treatment strategy on the disease transmission. When eradication is impossible, we derive the necessary conditions for optimal control of the disease using Pontryagin's Maximum Principle. The results obtained from the numerical simulations of the model show that a possible vaccination combined with effective treatment regime would reduce the spread of the disease appreciably.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biosystems.2011.07.006 | DOI Listing |
Med Res Rev
January 2025
Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain.
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
January 2025
Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
Objective: Osteoimmunology is an emerging field that explores the interplay between bone and the immune system. The immune system plays a critical role in the pathogenesis of diabetes and significantly affects bone homeostasis. Artesunate, a first-line treatment for malaria, is known for its low toxicity and multifunctional properties.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali.
Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Laboratorio ICEMR- Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú.
Background: While the global burden of malaria cases has decreased over the last two decades, the disease remains a major international threat, even on the rise in many regions. More than 85% of Peruvian malaria cases are in the Amazonian region of Loreto. Internal mobility primarily related to occupation is thought to be primarily responsible for maintaining endemicity and introducing and reintroducing malaria parasites into areas of anophelism, a challenge for malaria eradication.
View Article and Find Full Text PDFPLoS Biol
January 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!