Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr(3)ghr ([Dpr(N-octanoyl)(3)] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH(2)), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in trials for clinical purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2011.08.001 | DOI Listing |
Endocrinology
January 2025
Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden.
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake, other feeding behaviours and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic Neuropeptide Y neurons that co-express Agouti-Related Peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats.
View Article and Find Full Text PDFInvest New Drugs
January 2025
Department of Pharmacy, Aichi Cancer Center Hospital, 1-1, Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan.
Anamorelin, a highly selective ghrelin receptor agonist, enhances appetite and increases lean body mass in patients with cancer cachexia. However, the predictors of its therapeutic effectiveness are uncertain. This study aimed to investigate the association between the Glasgow prognostic score (GPS), used for classifying the severity of cancer cachexia, the therapeutic effectiveness of anamorelin, and the feasibility of early treatment based on cancer types.
View Article and Find Full Text PDFPharmacol Res Perspect
February 2025
Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.
Cachexia is a multifactorial metabolic syndrome characterized by weight and skeletal muscle loss caused by underlying illnesses such as cancer, heart failure, and renal failure. Inflammation, insulin resistance, increased muscle protein degradation, decreased food intake, and anorexia are the primary pathophysiological drivers of cachexia. Cachexia causes physical deterioration and functional impairment, loss of quality of life, lower response to active treatment, and ultimately morbidity and mortality, while the difficulties in tackling cachexia in its advanced phases and the heterogeneity of the syndrome among patients require an individualized and multidisciplinary approach from an early stage.
View Article and Find Full Text PDFEndocr J
December 2024
Forefront Research Center, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
JCI Insight
December 2024
Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA.
BACKGROUNDStudies have demonstrated the role of ghrelin in alcohol-related behaviors and consumption. Blockade of the growth hormone secretagogue receptor (GHSR), which is the ghrelin receptor, has been shown to decrease alcohol drinking and reward-related behaviors across several animal models. We previously conducted a human study testing a GHSR inverse agonist/competitive antagonist, PF-5190457, in individuals who are heavy drinkers and showed its safety when coadministered with alcohol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!