Fos expression following regimens of predator stress versus footshock that differentially affect prepulse inhibition in rats.

Physiol Behav

Neuroscience Training Program, Department of Psychiatry, University of Wisconsin-Madison, 7225 Medical Sciences Center, 1300 University Ave, Madison, WI 53706, USA.

Published: October 2011

Stress is suggested to exacerbate symptoms and contribute to relapse in patients with schizophrenia and several other psychiatric disorders. A prominent feature of many of these illnesses is an impaired ability to filter information through sensorimotor gating processes. Prepulse inhibition (PPI) is a functional measure of sensorimotor gating, and known to be deficient in schizophrenia and sometimes in post-traumatic stress disorder (PTSD), both of which are also sensitive to stress-induced symptom deterioration. We previously found that a psychological stressor (exposure to a ferret without physical contact), but not footshock, disrupted PPI in rats, suggesting that intense psychological stress/trauma may uniquely model stress-induced sensorimotor gating abnormalities. In the present experiment, we sought to recreate the conditions where we found this behavioral difference, and to explore possible underlying neural substrates. Rats were exposed acutely to ferret stress, footshock, or no stress (control). 90 min later, tissue was obtained for Fos immunohistochemistry to assess neuronal activation. Several brain regions (prelimbic, infralimbic, and cingulate cortices, the paraventricular hypothalamic nucleus, the paraventricular thalamic nucleus, and the lateral periaqueductal gray) were equally activated following exposure to either stressor. Interestingly, the medial amygdala and dorsomedial periaqueductal gray had nearly twice as much Fos activation in the ferret-exposed rats as in the footshock-exposed rats, suggesting that higher activation within these structures may contribute to the unique behavioral effects induced by predator stress. These results may have implications for understanding the neural substrates that could participate in sensorimotor gating abnormalities seen in several psychiatric disorders after psychogenic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183172PMC
http://dx.doi.org/10.1016/j.physbeh.2011.08.001DOI Listing

Publication Analysis

Top Keywords

sensorimotor gating
16
predator stress
8
prepulse inhibition
8
psychiatric disorders
8
rats suggesting
8
gating abnormalities
8
neural substrates
8
periaqueductal gray
8
stress
7
rats
5

Similar Publications

Background/objectives: The auditory middle-latency responses (AMLRs) assess central sensory processing beyond the brainstem and serve as a measure of sensory gating. They have clinical relevance in the diagnosis of neurological conditions. In this study, magnitude and habituation of the AMLRs were tested for sensitivity and specificity in classifying dizzy patients with vestibular migraine (VM) and post-concussive syndrome.

View Article and Find Full Text PDF

Pain is closely linked to alpha oscillations (8 < 13 Hz) which are thought to represent a supra-modal, top-down mediated gating mechanism that shapes sensory processing. Consequently, alpha oscillations might also shape the cerebral processing of nociceptive input and eventually the perception of pain. To test this mechanistic hypothesis, we designed a sham-controlled and double-blind electroencephalography (EEG)-based neurofeedback study.

View Article and Find Full Text PDF

Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.

View Article and Find Full Text PDF

Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.

View Article and Find Full Text PDF

The article provides a review of the sensory processing (SP) phenomenon, its origins, theoretical models, and neurophysiological foundations. Initiated by A. Jean Ayres' research on sensory integration in the 1960s and 70s, this field has evolved, leading to the development of concepts such as Winnie Dunn's four quadrant model and Miller's ecological model of sensory modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!