H2S (hydrogen sulfide) is a well known and pungent gas recently discovered to be synthesized enzymatically in mammalian and human tissues. In a relatively short period of time, H2S has attracted substantial interest as an endogenous gaseous mediator and potential target for pharmacological manipulation. Studies in animals and humans have shown H2S to be involved in diverse physiological and pathophysiological processes, such as learning and memory, neurodegeneration, regulation of inflammation and blood pressure, and metabolism. However, research is limited by the lack of specific analytical and pharmacological tools which has led to considerable controversy in the literature. Commonly used inhibitors of endogenous H2S synthesis have been well known for decades to interact with other metabolic pathways or even generate NO (nitric oxide). Similarly, commonly used H2S donors release H2S far too quickly to be physiologically relevant, but may have therapeutic applications. In the present review, we discuss the enzymatic synthesis of H2S and its emerging importance as a mediator in physiology and pathology. We also critically discuss the suitability of proposed 'biomarkers' of H2S synthesis and metabolism, and highlight the complexities of the currently used pharmacological H2S 'donor' molecules and 'specific' H2S synthesis inhibitors in their application to studying the role of H2S in human disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CS20110267 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
Inflammatory bowel disease involves excess reactive oxygen species (ROS) and hydrogen sulfide (HS) at inflammatory sites. Nanozyme-mediated ROS and HS scavenging therapy is promising for colitis treatment. Here, we synthesized a multiple ROS scavenging CuO nanoparticle and first explored its HS scavenging capacity.
View Article and Find Full Text PDFPharmacol Ther
December 2024
Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Electronic address:
Hydrogen sulfide (HS) is an environmental hazard well known for its neurotoxicity. In mammalian cells, HS is predominantly generated by transsulfuration pathway enzymes. In addition, HS produced by gut microbiome significantly contributes to the total sulfide burden in the body.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
College of Agriculture, Guangxi University, Nanning, 530004, China.
Cold stress is an environmental factor that seriously restricts the growth, production and survival of plants, and has received extensive attention in recent years. Hydrogen sulfide (HS) is an ubiquitous gas signaling molecule, and its role in alleviating plant cold stress has become a research focus in recent years. This paper reviews for the first time the significant effect of HS on improving plant cold resistance, which makes up for the gaps in the existing literature.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Biology, University of Konstanz, Konstanz, Germany.
Plant-produced sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is one of the most abundant sulfur-containing compounds in nature and its bacterial degradation plays an important role in the biogeochemical sulfur and carbon cycles and in all habitats where SQ is produced and degraded, particularly in gut microbiomes. Here, we report the enrichment and characterization of a strictly anaerobic SQ-degrading bacterial consortium that produces the C-sulfonate isethionate (ISE) as the major product but also the C-sulfonate 2,3-dihydroxypropanesulfonate (DHPS), with concomitant production of acetate and hydrogen (H). In the second step, the ISE was degraded completely to hydrogen sulfide (HS) when an additional electron donor (external H) was supplied to the consortium.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
The intracellular bacterium (Fn) mediates tumorigenesis and progression in colorectal cancer (CRC). However, the origin of intratumoral Fn and the role of Fn-infected immunocytes in the tumor microenvironment remain unclear. Here, we observed that Fn-infected neutrophils/macrophages (PMNs/MΦs), especially PMNs, accumulate in tumor tissues and fecal Fn abundance correlates positively with an abundance of blood PD-L1 PMNs in CRC patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!