SNPs in ADAMTS13.

Pharmacogenomics

Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation & Research, US FDA, Bethesda, MD 20892, USA.

Published: August 2011

The multidomain metalloprotease ADAMTS13 limits thrombus formation via the cleavage of large multimeric forms of von Willebrand factor. Deficiency of functional ADAMTS13 is associated with a number of disease pathologies including thrombotic thrombocytopenic purpura, cardiovascular disease and inflammation. To date, deficiency is known to result from mutations in the ADAMTS13 gene or from inhibitory and non-neutralizing antibodies. The exact contributory effect of genetic variation in ADAMTS13 on observable pathology is unclear, and specifically, polymorphisms of ADAMTS13 have not been the focus of much systematic study. Here we have amassed an up-to-date collection of ADAMTS13 polymorphisms described in the literature and from the National Center for Biotechnology Information's SNP database. This article considers the effect that these polymorphisms may have on the expression and function of ADAMTS13 and speculates on their relevance in future therapies based on pharmacogenomics.

Download full-text PDF

Source
http://dx.doi.org/10.2217/pgs.11.66DOI Listing

Publication Analysis

Top Keywords

adamts13
7
snps adamts13
4
adamts13 multidomain
4
multidomain metalloprotease
4
metalloprotease adamts13
4
adamts13 limits
4
limits thrombus
4
thrombus formation
4
formation cleavage
4
cleavage large
4

Similar Publications

GC1126A, a novel ADAMTS13 mutein, evades autoantibodies in immune-mediated thrombotic thrombocytopenic purpura.

Sci Rep

January 2025

Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea.

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare and life-threatening blood disorder characterized by the formation of blood clots in small blood vessels. It is caused by antibodies targeting the A disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS13), which plays a role in cleaving von Willebrand factor. Most patients with iTTP have autoantibodies against specific domains of the ADAMTS13 protein, particularly the cysteine-rich and spacer domains.

View Article and Find Full Text PDF

Respiratory tract infections (RTIs) caused by bacteria or viruses are associated with stroke severity. Recent studies have revealed an imbalance in the von Willebrand factor (VWF)-ADAMTS13 axis in patients with RTIs, including COVID-19. We examined whether this imbalance contributes to RTI-mediated stroke severity.

View Article and Find Full Text PDF

Allosteric regulation of ADAMTS13 (A Disintegrin And Metalloproteinase with ThromboSpondin type-1 motif, member 13) activity involves an interaction between its Spacer (S) and CUB1-2 domains to keep the enzyme in a closed, latent conformation. Monoclonal antibodies (mAb) uncouple the S-CUB interaction to open the ADAMTS13 conformation and thereby disrupt the global enzyme latency. The molecular mechanism behind this mAb-induced allostery remains poorly understood.

View Article and Find Full Text PDF

There are two main classifications for thrombotic thrombocytopenic purpura (TTP): immune and hereditary. The majority of TTP cases are immune in nature and are due to inhibitor autoantibodies against ADAMTS13. Hereditary TTP is caused by biallelic pathogenic variants in the ADAMTS13 gene.

View Article and Find Full Text PDF

Congenital thrombotic thrombocytopenic purpura (cTTP), which is associated with mutations in the gene for a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13 (ADAMTS13), is a chronic and lifelong disease. The clinical course is variable. Regularly using ADAMTS13-containing products such as fresh frozen plasma (FFP) for long-term prophylaxis is the most important treatment to prevent thrombotic microangiopathy (TMA) episodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!