Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
T lymphocytes play a vital role in antimalaria immunity, but there is little information about the role of T cells in malaria infection. In order to explore the profile of T cells in malaria immunity, we infected Chinese rhesus macaques with the malaria parasite (Plasmodium cynomolgi) and examined the dynamics of T cell subsets. Both repeated and long-term infections were involved. Our results showed that the monkeys in the repeated infection group acquired protective immunity through primary infection, which was evidenced by a much lower parasitemia, milder anemia, and milder fever during reinfection; the monkeys in the long-term infection group also developed protective immunity, but this was not sufficient to eliminate the parasite. The total counts of leukocytes, neutrophils, CD3+ T cells, CD4+ or CD8+ T cells, and naïve and memory CD4+ and CD8+ T cells declined during the acute phase of malaria but increased after the parasite was controlled. The total number of activated CD4+ T cells significantly increased during malaria in animals with a long-term infection, which remained at least 3 months after the termination of malaria. However, the activated CD4+ T cells decreased during the acute phase of infection in the repeated infection group and converted to preinfection levels after malaria was cured. Regulatory CD4+ T cells continued to increase during the malaria infections and quickly reverted to preinfection levels after the parasite was controlled. Our study provides a systematic analysis of the kinetic profiles of T lymphocyte subsets during malaria infections and provides some experimental insight into malaria immunology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00436-011-2581-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!