Mutations in the ExbB cytoplasmic carboxy terminus prevent energy-dependent interaction between the TonB and ExbD periplasmic domains.

J Bacteriol

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: October 2011

AI Article Synopsis

  • The TonB system in Gram-negative bacteria helps transport vital nutrients across their outer membrane by utilizing a set of integral membrane proteins, including TonB, ExbB, and ExbD.
  • In a study on Escherichia coli, the cytoplasmic region of the ExbB protein was analyzed, revealing that certain mutations in this region affected the protein's functionality and its ability to interact with TonB and ExbD.
  • The results indicate that the mutations hindered a crucial signaling event necessary for nutrient transport, highlighting the importance of ExbB's cytoplasmic domain in the function of the TonB system.

Article Abstract

The TonB system of Gram-negative bacteria provides passage across the outer membrane (OM) diffusion barrier that otherwise limits access to large, scarce, or important nutrients. In Escherichia coli, the integral cytoplasmic membrane (CM) proteins TonB, ExbB, and ExbD couple the CM proton motive force (PMF) to active transport of iron-siderophore complexes and vitamin B(12) across the OM through high-affinity transporters. ExbB is an integral CM protein with three transmembrane domains. The majority of ExbB occupies the cytoplasm. Here, the importance of the cytoplasmic ExbB carboxy terminus (residues 195 to 244) was evaluated by cysteine scanning mutagenesis. D211C and some of the substitutions nearest the carboxy terminus spontaneously formed disulfide cross-links, even though the cytoplasm is a reducing environment. ExbB N196C and D211C substitutions were converted to Ala substitutions to stabilize them. Only N196A, D211A, A228C, and G244C substitutions significantly decreased ExbB activity. With the exception of ExbB(G244C), all of the substituted forms were dominant. Like wild-type ExbB, they all formed a formaldehyde cross-linked tetramer, as well as a tetramer cross-linked to an unidentified protein(s). In addition, they could be formaldehyde cross-linked to ExbD and TonB. Taken together, the data suggested that they assembled normally. Three of four ExbB mutants were defective in supporting both the PMF-dependent formaldehyde cross-link between the periplasmic domains of TonB and ExbD and the proteinase K-resistant conformation of TonB. Thus, mutations in a cytoplasmic region of ExbB prevented a periplasmic event and constituted evidence for signal transduction from cytoplasm to periplasm in the TonB system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187225PMC
http://dx.doi.org/10.1128/JB.05674-11DOI Listing

Publication Analysis

Top Keywords

carboxy terminus
12
exbb
9
tonb exbd
8
periplasmic domains
8
domains tonb
8
tonb system
8
d211c substitutions
8
formaldehyde cross-linked
8
tonb
7
mutations exbb
4

Similar Publications

Functional characterization of novel compound heterozygous missense gene variants causing congenital dyshormonogenic hypothyroidism.

Front Endocrinol (Lausanne)

January 2025

Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.

Introduction: The sodium/iodide symporter (NIS) mediates active iodide accumulation in the thyroid follicular cell. Biallelic loss-of-function variants in the NIS-coding gene cause congenital dyshormonogenic hypothyroidism due to a defect in the accumulation of iodide, which is required for thyroid hormonogenesis.

Objective: We aimed to identify, and if so to functionally characterize, novel pathogenic gene variants in a patient diagnosed with severe congenital dyshormonogenic hypothyroidism characterized by undetectable radioiodide accumulation in a eutopic thyroid gland, as well as in the salivary glands.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) encodes genes essential for oxidative phosphorylation. The m.3243A>G mutation causes severe disease, including myopathy, lactic acidosis and stroke-like episodes (MELAS) and is the most common pathogenic mtDNA mutation in humans.

View Article and Find Full Text PDF
Article Synopsis
  • HECT E3 ubiquitin ligases are crucial for plant growth, development, and stress responses, but their functions in this particular context are largely unexplored.
  • A detailed genome-wide analysis was conducted to investigate the evolutionary relationships, gene structure, and environmental stress-response elements of the HECT gene family, identifying key candidate genes linked to abiotic stress tolerance.
  • The study found that the gene PeHECT1 has significant roles in stress response and is activated by the transcription factor PeERF3, suggesting its importance in enhancing plant resilience to environmental challenges.
View Article and Find Full Text PDF

Structural insights into regulated intramembrane proteolysis by the positive alginate regulator MucP from Pseudomonas aeruginosa.

Biochem Biophys Res Commun

December 2024

College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China. Electronic address:

Regulated intramembrane proteolysis (RIP) is a fundamentally conserved mechanism involving sequential cleavage by a membrane-bound Site-1 protease (S1P) and a transmembrane Site-2 protease (S2P). In the opportunistic pathogen Pseudomonas aeruginosa, the alternate sigma factor σ activates alginate production and in turn is regulated by the MucABCD system. The anti-sigma factor MucA, which inhibits σ, is sequentially cleaved via RIP by AlgW (S1P) and MucP (S2P) respectively.

View Article and Find Full Text PDF
Article Synopsis
  • CHIP (Carboxy-terminus of Hsc70-interacting protein) is an E3 ligase that helps regulate protein stability and plays a crucial role in reducing damage from acute kidney injury (AKI), especially related to cisplatin treatment.
  • In cisplatin-induced AKI, CHIP levels decrease, leading to increased oxidative stress and cell death in renal proximal tubular cells.
  • The study shows that CHIP promotes the degradation of NUR77, a protein that contributes to apoptosis, thus suggesting a protective mechanism against kidney damage caused by cisplatin.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!