Objective: To describe two predictive models that predict for prostate cancer on biopsy derived from a large screening population. There are no published predictive models that predict prostate cancer in a screened population.
Methods: The patients from the Tyrol screening study of known age, total prostate-specific antigen (PSA) level, digital rectal examination (DRE) findings, prostate volume, and percentage of free PSA, and who underwent an initial prostate biopsy from January 1992 to June 2004 were included (n = 2271). Multivariate logistic regression models were used to develop the biopsy positivity predictive models: nomogram 1, age, DRE, and total PSA; and nomogram 2, age, DRE, total PSA, and percentage of free PSA. The predictive accuracy of the models was assessed in terms of discrimination and calibration. External validation of the nomograms was performed using a urologically referred population of patients who underwent prostate biopsy (n = 599).
Results: Both nomograms were well-calibrated internally and externally and discriminated well between patients with positive and negative biopsy findings for both the European and U.S. cohorts (model 2 better than model 1).
Conclusion: Our nomogram with age, total PSA, and DRE had good predictive ability to differentiate between screened patients with cancer on the initial prostate biopsy and those without. Adding the percentage of free PSA improves this predictive power further. These models might aid in clinical decision making regarding the need for biopsy in both European and U.S. populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.urology.2011.05.061 | DOI Listing |
Eur J Radiol
January 2025
Department of Radiology, West China Hospital Sichuan University Chengdu Sichuan China. Electronic address:
Purpose: To develop and validate an MRI-based model for predicting postoperative early (≤2 years) recurrence-free survival (RFS) in patients receiving upfront surgical resection (SR) for beyond Milan hepatocellular carcinoma (HCC) and to assess the model's performance in separate patients receiving neoadjuvant therapy for similar-stage tumors.
Method: This single-center retrospective study included consecutive patients with resectable BCLC A/B beyond Milan HCC undergoing upfront SR or neoadjuvant therapy. All images were independently evaluated by three blinded radiologists.
Background: Coronary heart disease (CHD) and depression frequently co-occur, significantly impacting patient outcomes. However, comprehensive health status assessment tools for this complex population are lacking. This study aimed to develop and validate an explainable machine learning model to evaluate overall health status in patients with comorbid CHD and depression.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States.
Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.
View Article and Find Full Text PDFJMIR Public Health Surveill
January 2025
School of Arts and Media, Wuhan College, Wuhan, China.
Background: The global aging population and rapid development of digital technology have made health management among older adults an urgent public health issue. The complexity of online health information often leads to psychological challenges, such as cyberchondria, exacerbating health information avoidance behaviors. These behaviors hinder effective health management; yet, little research examines their mechanisms or intervention strategies.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Institute of History and Ethics in Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany.
Background: In data-sparse areas such as health care, computer scientists aim to leverage as much available information as possible to increase the accuracy of their machine learning models' outputs. As a standard, categorical data, such as patients' gender, socioeconomic status, or skin color, are used to train models in fusion with other data types, such as medical images and text-based medical information. However, the effects of including categorical data features for model training in such data-scarce areas are underexamined, particularly regarding models intended to serve individuals equitably in a diverse population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!