The invasion of lionfish in the Caribbean is causing grave concern because of its deleterious impacts on coral reef food-webs. We have used an Ecopath-with-Ecosim model to predict the impacts of lionfish invasion on a coral reef community based on pre-invasion fish community data. Forty-six groups were defined, and an initial Ecopath model was balanced with a near-zero biomass of lionfish. In Ecosim, the near-zero biomass was eradicated by applying a very high fishing pressure in the first year of simulation. We subsequently (re-)introduced lionfish with a very low biomass, and allowed them to increase to very high abundance. With a near-zero lionfish biomass, the great majority of mesocarnivorous/omnivorous coral reef fish were predicted to be dominant while sharks were predicted to be the apex predators. Different management scenarios were established in the ecosystem to explore the eradication and resilience of lionfish. The management scenarios showed that if all adult lionfish were exploitable it will in theory be possible to fish the lionfish to a very low level, but the fishing pressure will have to be maintained, or the lionfish will recover. If the largest individuals are unexploitable it will be much more difficult to control the lionfish population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2011.07.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!