Balb/c mice display deficits of sociability; for example, they show reduced locomotor activity in the presence of an enclosed or freely-moving social stimulus mouse. Transgenic mice with defective or diminished expression of NMDA receptors manifest impaired sociability, while a partial and full agonist of the obligatory glycine co-agonist binding site on the NMDA receptor improved sociability in the Balb/c mouse strain. Because 2-methyl-6-(phenylethynyl)-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor (mGluR), reduced self-grooming behavior in BTBR T+tfJ (BTBR) mice, another inbred genetic mouse model of autism spectrum disorders (ASDs), and mGluR5 antagonism is emerging as an experimental treatment for the 'fragile X syndrome," which has a high prevalence of co-morbid ASDs, we examined the effects of MPEP on sociability and stereotypic behaviors in Balb/c and Swiss Webster mice in a standard paradigm. MPEP had complex effects on sociability, impairing some measures of sociability in both strains, while it reduced the intensity of some spontaneous measures of stereotypic behaviors emerging during free social interaction in Swiss Webster mice. Conceivably, mGluR5 antagonism exacerbates diminished endogenous tone of NMDA receptor-mediated neurotransmission in neural circuits relevant to at least some measures of sociability in Balb/c mice; the mGluR5 receptor contributes to regulation of the phosphorylation status of the NMDA receptor. In any event, although stereotypies are an important therapeutic target in ASDs, medication strategies to attenuate their severity via antagonism of mGluR5 receptors must be pursued cautiously because of their potential to worsen at least some measures of sociability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2011.08.001DOI Listing

Publication Analysis

Top Keywords

mglur5 antagonism
12
stereotypic behaviors
12
measures sociability
12
sociability
9
complex effects
8
sociability stereotypic
8
autism spectrum
8
spectrum disorders
8
balb/c mice
8
nmda receptor
8

Similar Publications

Cellular Prion Protein Conformational Shift after Liquid-Liquid Phase Separation Regulated by a Polymeric Antagonist and Mutations.

J Am Chem Soc

October 2024

Departments of Neuroscience and Neurology, Yale School of Medicine, 100 College Street, New Haven, Connecticut 06510, United States.

Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrP) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid--maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrP and amyloid-β oligomers (Aβo). We show that PSCMA can induce reentrant LLPS of PrP and lower the saturation concentration () of PrP by 100-fold.

View Article and Find Full Text PDF

Fenobam modulates distinct electrophysiological mechanisms for regulating excessive gamma oscillations in the striatum of dyskinetic rats.

Exp Neurol

August 2024

Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; NHC Key Laboratory of Prevention and treatment of Cerebrovascular Disease, Henan Key Laboratory of Cerebrovascular Diseases of Zhengzhou University, Zhengzhou, China. Electronic address:

Gamma oscillations have been frequently observed in levodopa-induced dyskinesia (LID), manifest as broadband (60-120 Hz) and narrowband (80-110 Hz) gamma activity in cortico-striatal projection. We investigated the electrophysiological mechanisms and correlation of gamma oscillations with dyskinesia severity, while assessing the administration of fenobam, a selective metabotropic glutamate receptor 5 (mGluR5) antagonist, in regulating dyskinesia-associated gamma activity. We conducted simultaneous electrophysiological recordings in Striatum (Str) and primary motor cortex (M1), together with Abnormal Involuntary Movement Scale scoring (AIMs).

View Article and Find Full Text PDF
Article Synopsis
  • - Levodopa-induced dyskinesia (LID) is a frequent problem for advanced Parkinson's disease patients using levodopa, and while glutamate receptor antagonists can help reduce LID, the specific mechanisms are still unknown.
  • - The study investigated the effects of MTEP, an mGluR5 antagonist, on LID by measuring neuronal activity in specific brain areas of different rat groups over 18 days, with MTEP showing significant reduction in LID symptoms compared to untreated rats.
  • - Results suggest that mGluR5 antagonism may help slow the worsening of LID by influencing key brain pathways involved in its development, indicating a potential therapeutic approach, but further research is necessary to confirm findings
View Article and Find Full Text PDF

The role of mGluR5 on the therapeutic effects of ketamine in Wistar rats.

Psychopharmacology (Berl)

July 2024

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.

Rationale: Ketamine produces dissociative, psychomimetic, anxiolytic, antidepressant, and anesthetic effects in a dose dependent manner. It has a complex mechanism of action that involve alterations in other glutamate receptors. The metabotropic glutamate receptor 5 (mGluR5) has been investigated in relation to the psychotic and anesthetic properties of ketamine, while its role in mediating the therapeutic effects of ketamine remains unknown.

View Article and Find Full Text PDF

There are currently only very few efficacious drug treatments for SCZ and BD, none of which can significantly ameliorate cognitive symptoms. Thus, further research is needed in elucidating molecular pathways linked to cognitive function and antipsychotic treatment. Circular RNAs (circRNAs) are stable brain-enriched non-coding RNAs, derived from the covalent back-splicing of precursor mRNA molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!