Apicomplexan parasites and subversion of the host cell microRNA pathway.

Trends Parasitol

Unité Mixte de Recherche 5163, Laboratoire Adaptation et Pathogénie des Micro-organismes, Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier Grenoble 1, BP 170, F-38042 Grenoble CEDEX 9, France.

Published: November 2011

RNA silencing plays a major role in innate antiviral and antibacterial defenses in plants, insects, and animals through the action of microRNAs (miRNAs). miRNAs can act in favor of the microorganism, either when it is pathogen-encoded or when the microorganism subverts host miRNAs to its benefit. Recent data point to the possibility that apicomplexan parasites have developed tactics to interfere with host miRNA populations in a parasite-specific manner, thereby identifying the RNA-silencing pathway as a new means to reshape their cellular environment. This review highlights the current understanding and new insights concerning the mechanisms that could be involved and the potential roles of the host microRNome (miRNome) in apicomplexan infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pt.2011.07.001DOI Listing

Publication Analysis

Top Keywords

apicomplexan parasites
8
parasites subversion
4
host
4
subversion host
4
host cell
4
cell microrna
4
microrna pathway
4
pathway rna
4
rna silencing
4
silencing plays
4

Similar Publications

Glycolysis is a conserved metabolic pathway that converts glucose into pyruvate in the cytosol, producing ATP and NADH. In and several other apicomplexan parasites, some glycolytic enzymes have isoforms located in their plastid (called the apicoplast). In this organelle, glycolytic intermediates like glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) are imported from the cytosol and further metabolized, providing ATP, reducing power, and precursors for anabolic pathways such as isoprenoid synthesis.

View Article and Find Full Text PDF

Unlabelled: Once considered rare in eukaryotes, polycistronic mRNA expression has been identified in kinetoplastids and, more recently, green algae, red algae, and certain fungi. This study provides comprehensive evidence supporting the existence of polycistronic mRNA expression in the apicomplexan parasite . Leveraging long-read RNA-seq data from different parasite strains and using multiple long-read technologies, we demonstrate the existence of defined polycistronic transcripts containing 2-4 protein encoding genes, several validated with RT-PCR.

View Article and Find Full Text PDF

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

Ticks are temporary ectoparasites that serve as vectors for a wide range of pathogens affecting both wildlife and humans. In Greece, research on the prevalence of tick-borne pathogens in wildlife is limited. This study investigates the presence of pathogens, including spp.

View Article and Find Full Text PDF

Comparative Analysis of Immune Response Genes Induced by a Virulent or Attenuated Strain of .

Int J Mol Sci

January 2025

Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico.

RNA-seq technology has been widely used for the characterization of the transcriptome profile induced by several diseases in both humans and animals. In the present study, RNA-seq was used to identify the differential expression of genes associated with the immune response in cattle infected with two different strains of , both derived from the same Mexican field isolate, which exhibit distinct phenotypic characteristics: the virulent strain, capable of producing acute clinical signs, and the attenuated strain, capable of stimulating a protective immune response when used as an immunogen with an efficacy greater than 80%. The differential gene expression analysis performed revealed a total of 620 differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!