Lumbar spine geometry, density and indices of bone strength were assessed relative to menarche status, using artistic gymnastics exposure during growth as a model of mechanical loading. Paired posteroanterior (pa) and supine lateral (lat) DXA scans of L3 for 114 females (60 ex/gymnasts and 54 non-gymnasts) yielded output for comparison of paired (palat) versus standard pa and lat outcomes. BMC, areal BMD, vertebral body dimensions, bone mineral apparent density (BMAD), axial compressive strength (IBS) and a fracture risk index were evaluated, modeling vertebral body geometry as an ellipsoid cylinder. Two-factor ANCOVA tested statistical effects of gymnastic exposure, menarche status and their interaction, adjusting for age and height as appropriate. Compared to non-gymnasts, ex/gymnasts exhibited greater paBMD, paBMC, paWidth, pa Cross-sectional area (CSA), paVolume, latBMD, latBMAD, palatCSA and palatIBS (p<0.05). Non-gymnasts exhibited greater latDepth/paWidth, latBMC/paBMC, latVHeight, latArea and Fracture Risk Index. Using ellipsoid vertebral geometric models, no significant differences were detected for pa or palat BMAD. In contrast, cuboid model results (Carter et al., 1992) suggested erroneous ex/gymnast paBMAD advantages, resulting from invalid assumptions of proportional variation in linear skeletal dimensions. Gymnastic exposure was associated with shorter, wider vertebral bodies, yielding greater axial compressive strength and lower fracture risk, despite no BMAD advantage. Our results suggest the importance of plane-specific vertebral geometric adaptation to mechanical loading during growth. Paired scan output provides a more accurate assessment of this adaptation than pa or lat plane scans alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200503 | PMC |
http://dx.doi.org/10.1016/j.bone.2011.07.033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!