The aim of this study was to assess the effect of nutrients on the production of menaquinone-7 and determine the optimum conditions to achieve a high concentration of this product. Bacillus subtilis natto was fermented at 40°C for a period of six days. Design of experiments was used for screening the most effective nutrients, and central composite face design was employed for the optimization. The optimum media consisted of 5% (w/v) yeast extract; 18.9% (w/v) soy peptone; 5% (w/v) glycerol and 0.06% (w/v) K(2)HPO(4). The pH, bacterial growth, concentrations of amino acids, glycerol and menaquinone-7 were measured at the optimum fermentation media each day. Total free amino acids concentration increased 1.7-fold during the fermentation. Lysine and glutamic acid were the most abundant whereas arginine, asparagine and serine were the limiting amino acids at the end of fermentation period. The menaquinone-7 concentration approached 86% of the final value in the third day of fermentation, where the bacteria growth was at exponential phase. At this condition the concentration of glycerol as carbon source and asparagine, serine and arginine as the amino acid sources were dramatically diminished in the fermentation media. The optimum menaquinone-7 concentration was in good agreement with the predicted value by the model (96% validity). The maximum menaquinone-7 concentration of 62.32 ± 0.34 mg/L was achieved after six days of fermentation; this value is the highest concentration reported in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2011.07.007DOI Listing

Publication Analysis

Top Keywords

amino acids
12
menaquinone-7 concentration
12
fermentation media
8
asparagine serine
8
concentration
7
menaquinone-7
6
fermentation
6
efficient media
4
media high
4
high menaquinone-7
4

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!