Discrimination of neutral oligosaccharides through a nanopore.

Biochem Biophys Res Commun

CNRS UMR 8587, Laboratoire Analyse et Environnement, Université d'Évry Val d'Essonne, Évry, France.

Published: September 2011

The detection of oligosaccharides at the single-molecule level was investigated using a protein nanopore device. Neutral oligosaccharides of various molecular weights were translocated through a single α-hemolysin nanopore and their nano-transit recorded at the single-molecule level. The translocation of maltose and dextran oligosaccharides featured by 1→4 and 1→6 glycosidic bonds respectively was studied in an attempt to discriminate oligosaccharides according to their polymerization degree and glycosidic linkages. Oligosaccharides were translocated through a free diffusion regime indicating that they adopted an extended conformation during their translocation in the nanopore. The dwell time increased with molecular mass, suggesting the usefulness of nanopore as a molecular sizing device.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.07.121DOI Listing

Publication Analysis

Top Keywords

neutral oligosaccharides
8
single-molecule level
8
oligosaccharides
6
nanopore
5
discrimination neutral
4
oligosaccharides nanopore
4
nanopore detection
4
detection oligosaccharides
4
oligosaccharides single-molecule
4
level investigated
4

Similar Publications

Free oligosaccharides in human milk have many biological functions for infant health. The reducing end of most human milk oligosaccharides is lactose, and caprine milk was reported to contain oligosaccharides structurally similar to those present in human milk. The structures of oligosaccharides were traditionally determined using nuclear magnetic resonance spectroscopy or enzyme digestion followed by various detection methods, e.

View Article and Find Full Text PDF

This work focuses on profiling N-linked glycans by capillary electrophoresis coupled to mass spectrometry using a novel fluorescent and mass spectrometry (MS) active derivatization tag. The label is based on 2-phenylpyridine bearing tertiary amine and hydrazide functionalities. It provides efficient labeling via hydrazone formation chemistry, promising fluorescence properties, and ionization efficiency in the positive ion MS mode.

View Article and Find Full Text PDF

Previous research demonstrated the growth promoting benefits of an essential oil/oligosaccharide blend (EO; Stay Strong, Ralco, Inc.) or an encapsulated sodium butyrate (C4; Ultramix GF, Adisseo, Inc.) fed to neonatal calves.

View Article and Find Full Text PDF

Structural elucidation and characterization of GH29A α-l-fucosidases and the effect of pH on their transglycosylation.

FEBS J

December 2024

Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark.

Article Synopsis
  • GH29A α-l-fucosidases are enzymes that help break down specific sugars in glycoconjugates and can also be used to create human milk oligosaccharides (HMOs) through a process called transglycosylation.
  • Researchers used bioinformatics tools and phylogenetic clustering to identify and analyze new microbial GH29A α-l-fucosidases from an underexplored group, as well as previously known enzymes, to determine their biochemical properties and behavior under different conditions.
  • The study found that transglycosylation of certain substrates was most effective at neutral to alkaline pH levels and revealed new structural insights into how these enzymes function, particularly regarding regioselectivity in product formation.
View Article and Find Full Text PDF

α2,6-linked sialylated oligosaccharides riched in goat milk alleviate food allergy by regulating the gut flora and mucin O-glycosylation.

Carbohydr Polym

February 2025

Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China. Electronic address:

The nutritious goat milk has low allergenicity. Oligosaccharides represent one of the crucial functional constituents in goat milk, which are structurally similar to human milk oligosaccharides (HMOs). Currently, the anti-allergic activity of GMOs has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!