Genetically engineered mouse models of Parkinson's disease.

Brain Res Bull

Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Published: May 2012

AI Article Synopsis

  • Parkinson's disease (PD) is a common neurodegenerative movement disorder, primarily affecting individuals over 60, characterized by resting tremors and various neurological symptoms.
  • The disease is identified by Lewy bodies, which contain the protein α-synuclein, and currently, there are no effective treatments to halt its progression.
  • To better understand PD and find new treatments, researchers have developed various genetic mouse models, especially those manipulating α-synuclein, revealing insights into disease mechanisms and potential therapeutic targets.

Article Abstract

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting more than 1% of the population over age 60. The most common feature of PD is a resting tremor, though there are many systemic neurological effects, such as incontinence and sleep disorders. PD is histopathologically identified by the presence of Lewy bodies (LB), proteinaceous inclusions constituted primarily by α-synuclein. To date, there is no effective treatment to slow or stop disease progression. To help understand disease pathogenesis and identify potential therapeutic targets, many genetic mouse models have been developed. By far the most common of these models are the wildtype and mutant α-synuclein transgenic mice, because α-synuclein was the first protein shown to have a direct effect on PD pathogenesis and progression. There are many other gene-disrupted or -mutated models currently available, which are based on genetic anomalies identified in the human disease. In addition, there are also models which examine genes that may contribute to disease onset or progression but currently have no identified causative PD mutations. These genes are part of signaling pathways important for maintaining neuronal function in the nigrostriatal pathway. This review will summarize the most commonly used of the genetic mouse models currently available for PD research. We will examine how these models have expanded our understanding of PD pathogenesis and progression, as well as aided in identification of potential therapeutic targets in this disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244549PMC
http://dx.doi.org/10.1016/j.brainresbull.2011.07.019DOI Listing

Publication Analysis

Top Keywords

mouse models
12
parkinson's disease
8
potential therapeutic
8
therapeutic targets
8
genetic mouse
8
pathogenesis progression
8
models currently
8
models
7
disease
6
genetically engineered
4

Similar Publications

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

Surfactant protein-B (SP-B) deficiency is a lethal neonatal respiratory disease with few therapeutic options. Gene therapy using adeno-associated viruses (AAV) to deliver human cDNA (AAV-hSPB) can improve survival in a mouse model of SP-B deficiency. However, the effect of this gene therapy wanes.

View Article and Find Full Text PDF

Constitutive loss of kynurenine-3-monooxygenase changes circulating kynurenine metabolites without affecting systemic energy metabolism.

Am J Physiol Endocrinol Metab

January 2025

Molecular and Cellular Exercise Physiology, Department of physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites of the kynurenine pathway of tryptophan degradation with opposing biological activities in the central nervous system. In the periphery, KYNA is known to positively affect metabolic health, whereas the effects of QUIN remain less explored. Interestingly, metabolic stressors, including exercise and obesity, differentially change the balance between circulating KYNA and QUIN.

View Article and Find Full Text PDF

Aging is a complex process characterized by biological decline and a wide range of molecular alterations to cells, including changes to DNA methylation. In this study, we used a male-specific epigenetic marker of aging to build an epigenetic predictor that measures long-term androgen exposure in sheep and mice (median absolute error of 4.3 and 1.

View Article and Find Full Text PDF

Senescence is a non-proliferative, survival state that cancer cells can enter to escape therapy. In addition to soluble factors, senescence cells secrete extracellular vesicles (EVs), which are important mediators of intercellular communication. To explore the role of senescent cell-derived EVs (senEVs) in inflammatory responses to senescence, we developed an engraftment-based senescence model in wild-type mice and genetically blocked senEV release in vivo, without significantly affecting soluble mediators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!