Bacterial plasmids and phages encode the synthesis of toxic molecules that inhibit protozoan predation. One such toxic molecule is violacein, a purple pigmented, anti-tumour antibiotic produced by the Gram-negative soil bacterium Chromobacterium violaceum. In the current experiments a range of Escherichia coli K12 strains were genetically engineered to produce violacein and a number of its coloured, biosynthetic intermediates. A bactivorous predatory protozoan isolate, Colpoda sp.A4, was isolated from soil and tested for its ability to 'graze' on various violacein producing strains of E. coli K12. A grazing assay was developed based on protozoan "plaque" formation. Using this assay, E. coli K12 strains producing violacein were highly resistant to protozoan predation. However E. coli K12 strains producing violacein intermediates, showed low or no resistance to predation. In separate experiments, when either erythromycin or pentachlorophenol were added to the plaque assay medium, protozoan predation of E. coli K12 was markedly reduced. The inhibitory effects of these two molecules were removed if E. coli K12 strains were genetically engineered to inactivate the toxic molecules. In the case of erythromycin, the E. coli K12 assay strain was engineered to produce an erythromycin inactivating esterase, PlpA. For pentachlorophenol, the E. coli K12 assay strain was engineered to produce a PCP inactivating enzyme pentachlorophenol-4-monooxygenase (PcpB). This study indicates that in environments containing large numbers of protozoa, bacteria which use efflux pumps to remove toxins unchanged from the cell may have an evolutionary advantage over bacteria which enzymatically inactivate toxins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plasmid.2011.07.006 | DOI Listing |
Talanta
January 2025
Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkiye; METU MEMS Research and Application Center, Ankara, Turkiye. Electronic address:
Bacterial bloodstream infections cause high morbidity and mortality. Although bacteria can be detected by various methods, culture methods are often used for the detection of live, accurate, reproducible, and selective bacterial identification. However, the culture method is time-consuming, and clinicians often start treatment immediately due to the long determination time.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. Electronic address:
Proteome microarray technology enables high-throughput analysis of protein interactions with all kinds of molecules. Wafer (6-inch) substrates offer a promising alternative to conventional glass (2.6 × 7.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy.
Introduction: Considering that plant biostimulants can be sprayed multiple times on leafy crops even just before harvest, it is relevant to know the impact of biostimulant applications on population dynamics of lettuce leaves to ensure food safety. Two trials were carried out to investigate whether the applications of a seaweed extract and a vegetal-derived protein hydrolysate (PH) could affect the growth in shake flasks (Exp. 1) and plant growth and survival of artificially inoculated on the leaf surface of lettuce grown in a floating system (Exp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!