We previously identified a hydrophobic-ligand-binding protein (HLBP) of the Taenia solium metacestode (TsM), which might be involved in the uptake of fatty acids (FAs) from host environments. The TsM 150kDa HLBP was a hetero-oligomeric complex composed of multiple 7kDa (RS1) and 10kDa (CyDA, b1 and m13h) subunits, and displayed a wide spectrum of binding affinities toward various FA analogs. In this study, we analysed biochemical properties and phylogenetic relationships of the individual subunits. Despite the low sequence identity (average 26.5%), these subunit proteins conserved an α-helix-rich structural domain and the first introns inserted in each of the respective chromosomal genes were found to be orthologous to one another, suggesting their common evolutionary origin. The recombinant RS1 protein bound strongly to all of the FA analogs examined including 11-[(5-dimethylaminonaphthalene-1-sulfonyl)amino]undecanoic acid (DAUDA), but not to 16-(9-anthroyloxy)palmitic acid (16-AP). The interactive binding between RS1 and FA analogs was specifically interfered with by the addition of non-fluorescent FA molecules or antibodies specific to the 150kDa protein. Conversely, the 10kDa members reacted only with the palmitic acid-derived 16-AP, whose interactive force was strengthened by the presence of other FA molecules. The use of mutagenic RS1 proteins demonstrated that a structural/electrostatic integrity around the second α-helix, rather than the conventional Trp residue, was the major factor governing the hydrophobic interaction. The 7 and 10kDa proteins exhibited distinctive immunoreactive patterns against sera from neurocysticercosis patients. These collective data suggest that the paralogous protein family have gained diverse functions during their evolution, to ensure the maintenance of metabolic homeostasis and survival of TsMs in hostile host environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpara.2011.07.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!