A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of biocompatible NiCo2O4 nanoparticles for applications in hyperthermia and drug delivery. | LitMetric

Unlabelled: Monodispersed, superparamagnetic nickel cobaltite (NCO) nanoparticles were functionalized using mercaptopropionic acid (MPA). MPA conjugates with NCO forming a metal-carboxylate linkage, with the MPA-MPA interaction occurring via formation of disulfide bonds, leaving another carboxyl end free for additional conjugation. The cytotoxicity studies on NCO-MPA show cell viability of ∼100% up to a dosage of 40 μg/mL on SiHa, MCF7, and B16F10 cell lines, and on mouse primary fibroblasts. Time-dependent cell viability studies done for a duration of 72 hours showed the cell lines' viability up to 80% for dosages as high as 80 μg/mL. Negligible leaching (<5 ppm) of ionic Co or Ni was noted into the delivery medium. Upon subjecting the NCO-MPA dispersion (0.1 mg/mL) to radiofrequency absorption, the nanoparticles were heated to 75°C within 2 minutes, suggesting its promise as a magnetic hyperthermia agent. Furthermore, the amino acid lysine and the drug cephalexin were successfully adducted to the NCO system, suggesting its potential for drug delivery.

From The Clinical Editor: NCO-MPA nanopartciles were found to be promising magnetic hyperthermia agents, suggesting potential future clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2011.07.010DOI Listing

Publication Analysis

Top Keywords

cell viability
8
characterization biocompatible
4
biocompatible nico2o4
4
nico2o4 nanoparticles
4
nanoparticles applications
4
applications hyperthermia
4
hyperthermia drug
4
drug delivery
4
delivery unlabelled
4
unlabelled monodispersed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!