Random effects models are widely used in population pharmacokinetics and dose-finding studies. However, when more than one observation is taken per patient, the presence of correlated observations (due to shared random effects and possibly residual serial correlation) usually makes the explicit determination of optimal designs difficult. In this article, we introduce a class of multiplicative algorithms to be able to handle correlated data and thus allow numerical calculation of optimal experimental designs in such situations. In particular, we demonstrate its application in a concrete example of a crossover dose-finding trial, as well as in a typical population pharmacokinetics example. Additionally, we derive a lower bound for the efficiency of any given design in this context, which allows us on the one hand to monitor the progress of the algorithm, and on the other hand to investigate the efficiency of a given design without knowing the optimal one. Finally, we extend the methodology such that it can be used to determine optimal designs if there exist some requirements regarding the minimal number of treatments for several (in some cases all) experimental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1541-0420.2011.01657.xDOI Listing

Publication Analysis

Top Keywords

optimal designs
12
correlated observations
8
pharmacokinetics dose-finding
8
dose-finding studies
8
random effects
8
population pharmacokinetics
8
efficiency design
8
optimal
5
efficient algorithms
4
algorithms optimal
4

Similar Publications

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics.

Environ Sci Pollut Res Int

January 2025

Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.

This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.

View Article and Find Full Text PDF

Background And Objective: Limited information is available on the pharmacokinetics of rifampicin (RIF) along with that of its active metabolite, 25-deacetylrifampicin (25-dRIF). This study aimed to analyse the pharmacokinetic data of RIF and 25-dRIF collected in adult patients treated for tuberculosis.

Methods: In adult patients receiving 10 mg/kg of RIF as part of a standard regimen for drug-susceptible pulmonary tuberculosis enrolled in the Opti-4TB study, plasma RIF and 25-dRIF concentrations were measured at various occasions.

View Article and Find Full Text PDF

The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.

View Article and Find Full Text PDF

Designing safe and reliable routes is the core of intelligent shipping. However, existing methods for industrial use are inadequate, primarily due to the lack of considering company preferences and ship maneuvering characteristics. To address these challenges, here we introduce a methodological framework that integrates maritime knowledge and autonomous maneuvering model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!