Microorganisms can degrade saturated hydrocarbons (alkanes) not only under oxic but also under anoxic conditions. Three denitrifying isolates (strains HxN1, OcN1, HdN1) able to grow under anoxic conditions by coupling alkane oxidation to CO(2) with NO(3) (-) reduction to N(2) were compared with respect to their alkane metabolism. Strains HxN1 and OcN1, which are both Betaproteobacteria, utilized n-alkanes from C(6) to C(8) and C(8) to C(12) respectively. Both activate alkanes anaerobically in a fumarate-dependent reaction yielding alkylsuccinates, as suggested by present and previous metabolite and gene analyses. However, strain HdN1 was unique in several respects. It belongs to the Gammaproteobacteria and was more versatile towards alkanes, utilizing the range from C(6) to C(30). Neither analysis of metabolites nor analysis of genes in the complete genome sequence of strain HdN1 hinted at fumarate-dependent alkane activation. Moreover, whereas strains HxN1 and OcN1 grew with alkanes and NO(3) (-), NO(2) (-) or N(2)O added to the medium, strain HdN1 oxidized alkanes only with NO(3) (-) or NO(2) (-) but not with added N(2)O; but N(2)O was readily used for growth with long-chain alcohols or fatty acids. Results suggest that NO(2) (-) or a subsequently formed nitrogen compound other than N(2)O is needed for alkane activation in strain HdN1. From an energetic point of view, nitrogen-oxygen species are generally rather strong oxidants. They may enable enzymatic mechanisms that are not possible under conditions of sulfate reduction or methanogenesis and thus allow a special mode of alkane activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151549PMC
http://dx.doi.org/10.1111/j.1758-2229.2010.00198.xDOI Listing

Publication Analysis

Top Keywords

strain hdn1
16
anoxic conditions
12
strains hxn1
12
hxn1 ocn1
12
alkane activation
12
alkanes no3
8
no3 no2
8
no2 n2o
8
alkane
6
alkanes
5

Similar Publications

Bacterial oxygen production in the dark.

Front Microbiol

October 2012

Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands.

Nitric oxide (NO) and nitrous oxide (N(2)O) are among nature's most powerful electron acceptors. In recent years it became clear that microorganisms can take advantage of the oxidizing power of these compounds to degrade aliphatic and aromatic hydrocarbons. For two unrelated bacterial species, the "NC10" phylum bacterium "Candidatus Methylomirabilis oxyfera" and the γ-proteobacterial strain HdN1 it has been suggested that under anoxic conditions with nitrate and/or nitrite, monooxygenases are used for methane and hexadecane oxidation, respectively.

View Article and Find Full Text PDF

Microorganisms can degrade saturated hydrocarbons (alkanes) not only under oxic but also under anoxic conditions. Three denitrifying isolates (strains HxN1, OcN1, HdN1) able to grow under anoxic conditions by coupling alkane oxidation to CO(2) with NO(3) (-) reduction to N(2) were compared with respect to their alkane metabolism. Strains HxN1 and OcN1, which are both Betaproteobacteria, utilized n-alkanes from C(6) to C(8) and C(8) to C(12) respectively.

View Article and Find Full Text PDF

Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria.

Arch Microbiol

January 2000

Max-Planck-Institut für Marine Mikrobiologie, Bremen, Germany.

The capacity of denitrifying bacteria for anaerobic utilization of saturated hydrocarbons (alkanes) was investigated with n-alkanes of various chain lengths and with crude oil in enrichment cultures containing nitrate as electron acceptor. Three distinct types of denitrifying bacteria were isolated in pure culture. A strain (HxN1) with oval-shaped, nonmotile cells originated from a denitrifying enrichment culture with crude oil and was isolated with n-hexane (C6H14).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!