Objective: SAR1b plays a significant role in the assembly, organization, and function of the coat protein complex II, a critical complex for the transport of proteins from the endoplasmic reticulum to the Golgi. Recently, mutations in SARA2 have been associated with lipid absorption disorders. However, functional studies on Sar1b-mediated lipid synthesis pathways and lipoprotein packaging have not been performed.
Methods And Results: Sar1b was overexpressed in Caco-2/15 cells and resulted in significantly augmented triacylglycerol, cholesteryl ester, and phospholipid esterification and secretion and markedly enhanced chylomicron production. It also stimulated monoacylglycerol acyltransferase/diacylglycerol acyltransferase activity and enhanced apolipoprotein B-48 protein synthesis, as well as elevated microsomal triglyceride transfer protein activity. Along with the enhanced chylomicrons, microsomes were characterized by abundant Sec12, the guanine exchange factor that promotes the localization of Sar1b in the endoplasmic reticulum. Furthermore, coimmunoprecipitation experiments revealed high levels of the complex components Sec23/Sec24 and p125, the Sec23-interacting protein. Finally, a pronounced interaction of Sec23/Sec24 with sterol regulatory element binding protein (SREBP) cleavage-activating protein and SREBP-1c was noted, thereby permitting the transfer of the transcription factor SREBP-1c to the nucleus for the activation of genes involved in lipid metabolism.
Conclusion: Our data suggest that Sar1b expression may promote intestinal lipid transport with the involvement of the coat protein complex II network and the processing of SREBP-1c.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.111.233908 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405.
Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.
View Article and Find Full Text PDFSci Adv
January 2025
College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
Variance in the properties of optical mesoscopic probes is often a limiting factor in applications. In the thermodynamic limit, the smaller the probe, the larger the relative variance. However, specific viral protein cages can assemble efficiently outside the bounds of statistical fluctuations at equilibrium through a process that is characterized by intrinsic quality-control and self-limiting capabilities.
View Article and Find Full Text PDFElife
January 2025
Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.
Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
Threads coated with bioresponsive materials hold promise for innovative wearable diagnostics. However, most thread coatings reported so far cannot be easily customized for different analytes and frequently incorporate non-biodegradable components. Most optically active thread coatings rely on dyes, which often exhibit irreversible responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!