A conformational change of the cellular prion protein (PrP(c)) underlies formation of PrP(Sc), which is closely associated with pathogenesis and transmission of prion diseases. The precise conformational prerequisites and the cellular environment necessary for this post-translational process remain to be completely elucidated. At steady state, glycosylated PrP(c) is found primarily at the cell surface, whereas a minor fraction of the population is disposed of by the ER-associated degradation-proteasome pathway. However, chronic ER stress conditions and proteasomal dysfunctions lead to accumulation of aggregation-prone PrP molecules in the cytosol and to neurodegeneration. In this study, we challenged different cell lines by inducing ER stress or inhibiting proteasomal activity and analyzed the subsequent repercussion on PrP metabolism, focusing on PrP in the secretory pathway. Both events led to enhanced detection of PrP aggregates and a significant increase of PrP(Sc) in persistently prion-infected cells, which could be reversed by overexpression of proteins of the cellular quality control. Remarkably, upon proteasomal impairment, an increased fraction of misfolded, fully glycosylated PrP molecules traveled through the secretory pathway and reached the plasma membrane. These findings suggest a novel pathway that possibly provides additional substrate and template necessary for prion formation when protein clearance by the proteasome is impaired.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190803PMC
http://dx.doi.org/10.1074/jbc.M111.272617DOI Listing

Publication Analysis

Top Keywords

prion protein
12
secretory pathway
12
prp molecules
8
prion
5
pathway
5
prp
5
proteasomal
4
proteasomal dysfunction
4
dysfunction endoplasmic
4
endoplasmic reticulum
4

Similar Publications

-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().

View Article and Find Full Text PDF

The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms.

View Article and Find Full Text PDF

Skin and Induced Pluripotent Stem Cells as Biomarkers for Neurodegenerative Diseases.

Genes (Basel)

November 2024

Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece.

As the global population ages, the rising prevalence of neurodegenerative diseases, characterized by abnormal protein aggregates, presents significant challenges for early diagnosis and disease monitoring. Identifying accessible tissue biomarkers is crucial for advancing our ability to detect and track the progression of these diseases. Among the most promising biomarkers is the skin, which shares a common embryological origin with the brain and central nervous system (CNS).

View Article and Find Full Text PDF

Multifaceted Role of Specialized Neuropeptide-Intensive Neurons on the Selective Vulnerability to Alzheimer's Disease in the Human Brain.

Biomolecules

November 2024

Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.

Regarding Alzheimer's disease (AD), specific neuronal populations and brain regions exhibit selective vulnerability. Understanding the basis of this selective neuronal and regional vulnerability is essential to elucidate the molecular mechanisms underlying AD pathology. However, progress in this area is currently hindered by the incomplete understanding of the intricate functional and spatial diversity of neuronal subtypes in the human brain.

View Article and Find Full Text PDF

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of invariably fatal neurodegenerative disorders. One of the candidate genes involved in prion diseases is the shadow of the prion protein () gene. Raccoon dogs, a canid, are considered to be a prion disease-resistant species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!