Rationale: Mechanisms underlying diastolic dysfunction need to be better understood.

Objective: To study the role of titin in diastolic dysfunction using a mouse model of experimental heart failure induced by transverse aortic constriction.

Methods And Results: Eight weeks after transverse aortic constriction surgery, mice were divided into heart failure (HF) and congestive heart failure (CHF) groups. Mechanical studies on skinned left ventricle myocardium measured total and titin-based and extracellular matrix-based passive stiffness. Total passive stiffness was increased in both HF and CHF mice, and this was attributable to increases in both extracellular matrix-based and titin-based passive stiffness, with titin being dominant. Protein expression and titin exon microarray analysis revealed increased expression of the more compliant N2BA isoform at the expense of the stiff N2B isoform in HF and CHF mice. These changes are predicted to lower titin-based stiffness. Because the stiffness of titin is also sensitive to titin phosphorylation by protein kinase A and protein kinase C, back phosphorylation and Western blot assays with novel phospho-specific antibodies were performed. HF and CHF mice showed hyperphosphorylation of protein kinase A sites and the proline glutamate valine lysine (PEVK) S26 protein kinase C sites, but hypophosphorylation of the PEVK S170 protein kinase C site. Protein phosphatase I abolished differences in phosphorylation levels and normalized titin-based passive stiffness levels between control and HF myocardium.

Conclusion: Transverse aortic constriction-induced HF results in increased extracellular matrix-based and titin-based passive stiffness. Changes in titin splicing occur, which lower passive stiffness, but this effect is offset by hyperphosphorylation of residues in titin spring elements, particularly of PEVK S26. Thus, complex changes in titin occur that combined are a major factor in the increased passive myocardial stiffness in HF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191198PMC
http://dx.doi.org/10.1161/CIRCRESAHA.111.246819DOI Listing

Publication Analysis

Top Keywords

passive stiffness
24
protein kinase
20
transverse aortic
16
diastolic dysfunction
12
heart failure
12
extracellular matrix-based
12
chf mice
12
titin-based passive
12
titin
9
stiffness
9

Similar Publications

Analysis and Testing of a Flyable Micro Flapping-Wing Rotor with a Highly Efficient Elastic Mechanism.

Biomimetics (Basel)

December 2024

Centre for Aeronautics, Faculty of Engineering and Applied Sciences, Cranfield University, Bedford MK43 0AL, UK.

A Flapping-Wing Rotor (FWR) is a novel bio-inspired micro aerial vehicle configuration, featuring unique wing motions which combine active flapping and passive rotation for high lift production. Power efficiency in flight has recently emerged as a critical factor in FWR development. The current study investigates an elastic flapping mechanism to improve FWRs' power efficiency by incorporating springs into the system.

View Article and Find Full Text PDF

Central mechanisms of muscle tone regulation: implications for pain and performance.

Front Neurosci

December 2024

Department of Psychology and Communication, University of Idaho, Moscow, ID, United States.

Muscle tone represents a foundational property of the motor system with the potential to impact musculoskeletal pain and motor performance. Muscle tone is involuntary, dynamically adaptive, interconnected across the body, sensitive to postural demands, and distinct from voluntary control. Research has historically focused on pathological tone, peripheral regulation, and contributions from passive tissues, without consideration of the neural regulation of active tone and its consequences, particularly for neurologically healthy individuals.

View Article and Find Full Text PDF

Introduction: Increased muscle stiffness in the upper trapezius has been suggested to be associated with cervical myofascial pain and myofascial trigger points (MTrP). Recently, efforts have been made to objectively detect MTrP using ultrasound shear wave elastography (SWE). However, there is no consensus on the relationship between muscle stiffness assessed by SWE and MTrP.

View Article and Find Full Text PDF

The effect of physical activity lifestyle on in-vivo passive stiffness of the lumbar spine.

J Electromyogr Kinesiol

December 2024

School of Kinesiology, The University of British Columbia, 6108 Thunderbird Blvd, Vancouver, BC, V6T 1Z3, Canada. Electronic address:

The passive stiffness of the lumbar spine has direct implications on one's risk of injury and spinal instability. Therefore, the effects that physical activity lifestyle may have on the lumbar spine's passive stiffness was assessed. Participants were classified as active (n = 20) or inactive (n = 21) after completing a physical activity questionnaire.

View Article and Find Full Text PDF

Background: In the rat knee stiffness model, the duration of traction treatment is mostly 20-40 min; however, relatively few studies have been conducted on longer traction treatment of extended knee stiffness in rats. Therefore, the aim of this study was to explore the efficacy of prolonged traction and its mechanism of action in extended knee stiffness in rats.

Methods: The model of extended knee joint stiffness was established in rats and treated with powered flexion position traction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!