The transport of calcium ions (Ca(2+)) to the cytosol is essential for immunoreceptor signaling, regulating lymphocyte differentiation, activation, and effector function. Increases in cytosolic-free Ca(2+) concentrations are thought to be mediated through two interconnected and complementary mechanisms: the release of endoplasmic reticulum Ca(2+) "stores" and "store-operated" Ca(2+) entry via plasma membrane channels. However, the identity of molecular components conducting Ca(2+) currents within developing and mature T cells is unclear. Here, we have demonstrated that the L-type "voltage-dependent" Ca(2+) channel Ca(V)1.4 plays a cell-intrinsic role in the function, development, and survival of naive T cells. Plasma membrane Ca(V)1.4 was found to be essential for modulation of intracellular Ca(2+) stores and T cell receptor (TCR)-induced rises in cytosolic-free Ca(2+), impacting activation of Ras-extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells (NFAT) pathways. Collectively, these studies revealed that Ca(V)1.4 functions in controlling naive T cell homeostasis and antigen-driven T cell immune responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.immuni.2011.07.011 | DOI Listing |
Eur J Immunol
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.
View Article and Find Full Text PDFChemMedChem
January 2025
University of Michigan Michigan Medicine, Internal Medicine, 2800 Plymouth Rd, NCRC 26-220S, 48109, Ann Arbor, UNITED STATES OF AMERICA.
A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated target and an attractive therapeutic approach for heart failure therapy. However, finding small-molecule SERCA2a activators is challenging.
View Article and Find Full Text PDFImmunol Res
January 2025
Department of Medical Chemistry, Yerevan State Medical University After M. Heratsi, Koryun Str., 0025, Yerevan, Armenia.
Experimental studies of chronic noise exposure in modern urban life testified about oxidative stress due to the corresponding hormones effects leading to accumulation of reactive oxygen species and endothelial dysfunction. This study aims to evaluate the protective effect of α2-adrenoblockers to modulate oxidative stress and corticosterone levels due to chronic noise exposure. To achieve this, we examined the effects of beditin (2-aminothiozolyl-1,4-benzodioxane) and mesedin (2-(2-methyl-amino-thiozolyl)-1,4-benzodioxane hydrochloride), along with changes in corticosterone, Ca2 + content, and morphological alterations in various tissues under noise-induced stress.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.
: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!