Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The role of different substructures of electroreceptor organs in signal encoding was explored using a heuristic computational model. This model consists of four modules representing the pre-receptor structures, the transducer cells, the synapses and the afferent fiber, respectively. Simulations reproduced previously obtained experimental data. We showed that different electroreceptor types described in the literature can be qualitative modeled with the same set of equations by changing only two parameters, one affecting the filtering properties of the pre-receptor, and the other affecting the transducer module. We studied the responses of different electroreceptor types to natural stimuli using simulations derived from an experimentally-obtained database in which the fish were exposed to resistive or capacitive objects. Our results indicate that phase and frequency spectra are differentially encoded by different subpopulations of tuberous electroreceptors. A different type of receptor responses to the same input is a necessary condition for encoding a multidimensional space of stimuli as in the waveform of the EOD. Our simulation analysis suggested that the electroreceptive mosaic may perform a waveform analysis of electrosensory signals. As in color vision or tactile texture perception, a secondary attribute, "electric color" may be encoded as a parallel activity of various electroreceptor types. This article is part of a Special Issue entitled Neural Coding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2011.07.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!