Probing small molecule-protein interactions: A new perspective for functional proteomics.

J Proteomics

Caprotec bioanalytics GmbH, Volmerstrasse 5, 12489 Berlin, Germany.

Published: December 2011

The isolation of proteome subsets on the basis of the interactions of small molecules with proteins is an emerging paradigm in proteomics. Depending on the nature of the small molecule used as a bait, entire protein families can be monitored in biological samples, or new functions can be attributed to previously uncharacterized proteins. With pharmaceutical compounds as baits, drug targets and toxicity-relevant off-targets can be discovered in an unbiased proteomic screen. At the heart of this strategy are synthetic bi- or trifunctional small molecule probes. These probes carry the small molecules of interest as baits (selectivity function), as well as a sorting function for the isolation of small molecule-protein complexes or conjugates from complex protein mixtures. In some designs, a covalent linkage of the bound protein to the probe is established through a separate reactivity function or a combined selectivity/reactivity function. The covalent linkage allows for isolation or detection of probe-protein conjugates also under harsh or denaturing conditions. Ultimately, specifically isolated proteins are commonly identified by mass spectrometry. This review summarizes probe designs, workflows, and published applications of the three dominant approaches in the field, namely affinity pulldown, activity-based protein profiling, and Capture Compound Mass Spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2011.07.017DOI Listing

Publication Analysis

Top Keywords

small molecule-protein
8
small molecules
8
small molecule
8
covalent linkage
8
mass spectrometry
8
small
5
probing small
4
molecule-protein interactions
4
interactions perspective
4
perspective functional
4

Similar Publications

Molecular docking is a structure-based computational technique that plays a major role in drug discovery. Molecular docking enhances the efficacy of determining the metabolic interaction between two molecules, i.e.

View Article and Find Full Text PDF

Chemical dissection of bacterial virulence.

Bioorg Med Chem

December 2024

Department of Immunology and Microbiology, Scripps Research, United States; Department of Chemistry, Scripps Research, United States. Electronic address:

The emergence of antibiotic-resistant bacteria has intensified the need for novel therapeutic strategies targeting bacterial virulence rather than growth or survival. Bacterial virulence involves complex processes that enable pathogens to invade and survive within host cells. Chemical biology has become a powerful tool for dissecting these virulence mechanisms at the molecular level.

View Article and Find Full Text PDF

WD repeat domain 5 (WDR5) inhibitors: a patent review (2016-present).

Expert Opin Ther Pat

January 2025

Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.

Introduction: WDR5 is an epigenetic scaffolding protein that has attracted significant interest as an anti-cancer drug target, especially in MLL-rearranged leukemias. The most druggable 'WIN-site' on WDR5, which tethers WDR5 to chromatin, has been successfully targeted with multiple classes of exquisitely potent small-molecule protein-protein interaction inhibitors. Earlier progress has also been made on the development of WDR5 degraders and inhibitors at the 'WBM-site' on the opposite face of WDR5.

View Article and Find Full Text PDF

Two structurally unrelated small molecule chemotypes, represented by compounds PAV-617 and PAV-951, with antiviral activity in cell culture against Mpox virus (formerly known as monkeypox virus) and human immunodeficiency virus (HIV) respectively, were studied for anti-cancer efficacy. Each exhibited apparent pan-cancer cytotoxicity with reasonable pharmacokinetics. Non-toxicity is demonstrated in a non-cancer cell line and in mice at doses achieving drug exposure at active concentrations.

View Article and Find Full Text PDF

Treatment options for pulmonary arterial hypertension (PAH) have improved substantially in the last 30 years, but there is still a need for novel molecules that can regulate the excessive accumulation of pulmonary artery smooth muscle cells (PASMCs) and consequent vascular remodeling. One set of possible candidates are protein kinases. The study provides an overview of existing preclinical and clinical data regarding small-molecule protein kinase inhibitors in PAH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!