Traditionally, depiction of isolated CNS fiber tracts is achieved by histological post mortem studies. As a tracer-dependent strategy, the calcium analog manganese has proved valuable for in vivo imaging of CNS trajectories, particularly in rats. However, adequate protocols in mice are still rare. To take advantage of the numerous genetic mouse mutants that are available to study axonal de- and regeneration processes, a MnCl2-based protocol for high-resolution contrast-enhanced MRI (MEMRI) of the visual pathway in mice acquired on a widely used clinical 3 Tesla scanner was established. Intravitreal application of MnCl2 significantly enhanced T1-weighted contrast and signal intensity along the retino-petal projection enabling its reconstruction in a 3D mode from a maximum intensity projection (MIP) calculated dataset. In response to crush injury of the optic nerve, axonal transport of MnCl2 was diminished and completely blocked proximal and distal to the lesion site, respectively. Conditions of Wallerian degeneration after acute optic nerve injury accelerated Mn2+-enhanced signal fading in axotomized projection areas between 12 and 24 h post-injury. In long-term regeneration studies 12 months after optic nerve injury, the MRI protocol proved highly sensitive and discriminated animals with rare spontaneous axonal regrowth from non-regenerating specimens. Also, structural MRI aspects shared high correlation with histological results in identical animals. Moreover, in a model of chronic neurodegeneration in p50/NF-κB-deficient mice, MnCl2-based neuron-axonal tracing supported by heat map imaging indicated neuropathy of the visual pathway due to atrophy of optic nerve fiber projections. Toxic effects of MnCl2 at MRI contrast-relevant dosages in repetitive administration protocols were ruled out by histological and optometric examinations. At higher dosages, photoreceptors, not retinal ganglion cells, turned out as most susceptible to the well-known toxicity of MnCl2. Our data accentuate in vivo MEMRI of the murine visual system as a highly specific and sensitive strategy to uncover axonal degeneration and restoration processes, even in a functional latent state. We expect MEMRI to be promising for future applications in longitudinal studies on development, aging, or regeneration of CNS projections in mouse models mimicking human CNS pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2011.07.069 | DOI Listing |
Life Sci Space Res (Amst)
February 2025
Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, United States.
Spaceflight-Associated Neuro-Ocular Syndrome (SANS) presents a critical risk in long-duration missions, with microgravity-induced changes that threaten astronaut vision and mission outcomes. Current SANS monitoring, limited to pre- and post-flight exams, lacks in-flight diagnostics, highlighting an urgent need for autonomous tools capable of real-time assessment. Grok, an AI platform by xAI, offers promising potential as an advanced diagnostic tool for space-based health monitoring.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
January 2025
Department of Ophthalmology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey.
Purpose: In this study, it was planned to compare the macular ganglion cell analysis (GCA) and peripapillary retinal nerve fiber layer (pRNFL) of the patients with preperimetric glaucoma (PPG), early stage glaucoma (EG) and the control group.
Methods: This retrospective study included a total of 103 eyes: 38 from EG patients, 30 from PPG patients, and 35 from healthy individuals at Ankara Bilkent City Hospital Glaucoma Unit between January 2018 and September 2021. Eyes were categorized into control, PPG, and EG groups based on visual field (VF) classification.
Int J Mol Sci
January 2025
Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, China.
Goldfish (), subjected to millennia of artificial selection and breeding, have diversified into numerous ornamental varieties, such as the celestial-eye (CE) goldfish, noted for its unique dorsal eye rotation. Previous studies have primarily focused on anatomical modifications in CE goldfish eyes, yet the molecular underpinnings of their distinctive eye orientation remain poorly understood. This study employed high-throughput transcriptome and proteome sequencing on 110-day-old full-sibling CE goldfish, which displayed either anterior or upward eye rotations.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Division of Ophthalmology, Department of Special Surgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
: Amblyopia is a condition where children undergo unilateral or bilateral vision loss due to a variety of disorders that impact the visual pathway. The assessment of retinal nerve fiber layer (RNFL) thickness in amblyopia has made optical coherence tomography (OCT) a useful technique for studying the pathophysiology of this condition. This study was conducted to assess OCT results for various forms of amblyopia, including macular thickness and peripapillary RNFL thickness.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Clinic for Eye Disease, University Clinical Center of Serbia, 11000 Belgrade, Serbia.
. Leber hereditary optic neuropathy (LHON) is a condition characterized by bilateral acute or subacute vision loss in seemingly healthy individuals. Depending on the disease stage and initial presentation, it is often diagnosed as optic neuritis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!