The rapid development of nanotechnology raises both enthusiasm and anxiety among researchers, which is related to the safety use of the manufactured materials. Thus, the aim of this study was to investigate the effect of aluminium oxide nanoparticles on the viability of selected mammalian cells in vitro. The aluminium oxide nanoparticles were characterised using SEM and BET analyses. Based on Zeta (ζ) potential measurements and particle size distribution, the tested suspensions of aluminium oxide nanoparticles in water and nutrient solutions with or without FBS were classified as unstable. Cell viability, the degree of apoptosis induction and nanoparticles internalization into the cells were assessed after 24 h of cell exposure to Al2O3 nanoparticles. Our results confirm the ability of aluminium oxide nanoparticles to penetrate through the membranes of L929 and BJ cells. Despite this, there was no significant increase in apoptosis or decrease in cell viability observed, suggesting that aluminium oxide nanoparticles in the tested range of concentrations has no cytotoxic effects on the selected mammalian cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2011.07.010 | DOI Listing |
Environ Technol
February 2025
Faculty of Built Environment, University of New South Wales, Sydney, Australia.
Ecological ditches serve as one of the important measures for the concentrated infiltration of stormwater in the construction process of sponge cities. Prolonged concentrated infiltration of stormwater can lead to the accumulation of pollutants and pollution risks in the substrate of ecological ditches. In this study, two different substrate ecological ditches were constructed, namely, a combined substrate ecological ditch with zeolite + ceramsite (EA), and a biological substrate ecological ditch (EB).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Laboratório de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil.
This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid.
View Article and Find Full Text PDFThe U.S. opioid epidemic is an extraordinary public health crisis that started in 1990 and significantly accelerated in the last decade.
View Article and Find Full Text PDFSmall
January 2025
Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621999, China.
The combustion efficiency and reactivity of aluminum (Al) particles, as a crucial component in solid propellants, are constrained by the inert oxide layer aluminum oxide (AlO). Polytetrafluoroethylene (PTFE) can remove the oxide layer, however, carbon deposition generated during the reaction process still limits the reaction efficiency of Al/PTFE fuel. Here, a litchi-like Al/PTFE fuel with the nano-PTFE islands distributed on the Al particles surface is successfully designed, based on localized activation and synergistic reaction strategies, to solve the AlO layer and carbon deposition.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!