β-Barrel membrane proteins have regular structures with extensive hydrogen-bond networks between their transmembrane (TM) β-strands, which stabilize their protein fold. Nevertheless, weakly stable TM regions, which are important for the protein function and interaction with other proteins, exist. Here, we report on the apparent stability of human Tom40A, a member of the "mitochondrial porin family" and main constituent of the mitochondrial protein-conducting channel TOM (translocase of the outer membrane). Using a physical interaction model, TmSIP, for β-barrel membrane proteins, we have identified three unfavorable β-strands in the TM domain of the protein. Substitution of key residues inside these strands with hydrophobic amino acids results in a decreased sensitivity of the protein to chemical and/or thermal denaturation. The apparent melting temperature observed when denatured at a rate of 1 °C per minute is shifted from 73 to 84 °C. Moreover, the sensitivity of the protein to denaturant agents is significantly lowered. Further, we find a reduced tendency for the mutated protein to form dimers. We propose that the identified weakly stable β-strands 1, 2 and 9 of human Tom40A play an important role in quaternary protein-protein interactions within the mammalian TOM machinery. Our results show that the use of empirical energy functions to model the apparent stability of β-barrel membrane proteins may be a useful tool in the field of nanopore bioengineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782296PMC
http://dx.doi.org/10.1016/j.jmb.2011.07.054DOI Listing

Publication Analysis

Top Keywords

β-barrel membrane
12
membrane proteins
12
weakly stable
8
apparent stability
8
human tom40a
8
sensitivity protein
8
protein
7
improving resistance
4
resistance eukaryotic
4
β-barrel
4

Similar Publications

Extracellular vesicles in dry eye disease and Sjogren syndrome: A systematic review on their diagnostic and therapeutic role.

Surv Ophthalmol

January 2025

Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository, LV Prasad Eye Institute, Hyderabad, Telangana, India.

Extracellular vesicles (EVs), defined as membrane-bound vesicles released from all cells, are being explored for their diagnostic and therapeutic role in dry eye disease (DED). We systematically shortlisted 32 articles on the role of EVs in diagnosing and treating DED. The systematic review covers the progress in the last 2 decades about the classification and isolation of EVs and their role in DED.

View Article and Find Full Text PDF

Purpose: Recovery rate of rod photoreceptor sensitivity (S2 gradient) following a bleach is reduced in age-related macular degeneration (AMD) due to diminished delivery of retinol across a grossly altered Bruch's membrane. Since triterpenoid saponins are known to improve transport across Bruch's, we have assessed their possible use for reversing the visual deficits in AMD.

Design: Double-blind, placebo controlled randomised clinical trial.

View Article and Find Full Text PDF

Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology.

View Article and Find Full Text PDF

The new EU Urban Wastewater Treatment Directive requires stricter limits introducing quaternary treatments and poses significant challenges to achieving a sustainable environment. Advanced membrane-based treatment processes combined with mathematical models can be a good solution for facing the challenges above. Most existing literature on membrane filtration models primarily focuses on membrane bioreactors, lacking mechanistic models on ultrafiltration (UF) membranes.

View Article and Find Full Text PDF

Thymol inhibits ergosterol biosynthesis in Nakaseomyces glabratus, but differently from azole antifungals.

J Mycol Med

December 2024

Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Introduction: Nakaseomyces glabratus is considered a high priority of attention according to WHO, and also is an important yeast species due to its high rate of intrinsic/acquired resistance against fluconazole. This study aimed at the possible mechanisms of action of thymol, as the promising new antifungal agent, in N. glabratus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!