To assess the suitability of water reuse technology for raising Pacific salmon Oncorhynchus spp. for stocking purposes, fish health and welfare were compared between two groups of juvenile Chinook salmon O. tshawytscha from the same spawn: one group was reared in a pilot partial water reuse system (circular tanks), and the other group was reared in a flow-through raceway. This observational study was carried out over a 21-week period in Washington State. Reuse and raceway fish were sampled repeatedly for pathogen screening and histopathology; fin erosion and whole-blood characteristics were also evaluated. By the study's end, no listed pathogens were isolated from either cohort, and survival was 99.3% and 99.0% in the reuse and raceway groups, respectively. Condition factor was 1.28 in raceway fish and 1.14 in reuse fish; this difference may have been attributable to occasional differences in feeding rates between the cohorts. Fin indices (i.e., length of the longest dorsal or caudal fin ray, standardized by fork length) were lower in reuse fish than in raceway fish, but fin erosion was not grossly apparent in either cohort. The most consistent histological lesion was gill epithelial hypertrophy in reuse fish; however, blood analyses did not suggest any corresponding physiological imbalances. Overall, results suggest that water reuse technology can be employed in rearing juvenile anadromous salmonids for stocking purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08997659.2011.574082DOI Listing

Publication Analysis

Top Keywords

water reuse
16
raceway fish
12
reuse fish
12
reuse
9
partial water
8
reuse system
8
rearing juvenile
8
juvenile chinook
8
chinook salmon
8
washington state
8

Similar Publications

Strongly coordinating mediator enables single-step resource recovery from heavy metal-organic complexes in wastewater.

Nat Commun

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.

Heavy metals complexed with organic ligands are among the most critical carcinogens threatening global water safety. The challenge of efficiently and cost-effectively removing and recovering these metals has long eluded existing technologies. Here, we show a strategy of coordinating mediator-based electro-reduction (CMBER) for the single-step recovery of heavy metals from wastewater contaminated with heavy metal-organic complexes.

View Article and Find Full Text PDF

Microalgal-bacteria biofilm shows great potential in low-cost greywater treatment. Accurately predicting treated greywater quality is of great significance for water reuse. In this work, machine learning models were developed for simulating and predicting linear alkylbenzene sulfonate (LAS) removal using 152-days collected data from a battled oxygenic microalgal-bacteria biofilm reactor (MBBfR).

View Article and Find Full Text PDF

Cellulose nanofibril enhanced ionic conductive hydrogels with high stretchability, high toughness and self-adhesive ability for flexible strain sensors.

Int J Biol Macromol

December 2024

State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China. Electronic address:

Preparation of ion-conductive hydrogels with excellent mechanics, good conductivity and adhesiveness is promising for flexible sensors, but remains a challenge. Here, we prepare a self-adhesive and ion-conductive hydrogel by introducing cellulose nanofibers (CNF) and ZnSO into a covalently-crosslinked poly (acrylamide-co-2-acrylamide-2-methyl propane sulfonic acid) (P(AM-co-AMPS)) network. Owing to the hydrogen bonding and metal coordination interactions among P(AM-co-AMPS) chains, CNF, and Zn, the resulting P(AM-co-AMPS)/CNF/ZnSO hydrogel exhibits high stretchability (1092 %), high toughness (244 kJ m), and skin-like elasticity (3.

View Article and Find Full Text PDF

The escalating global problem of antibiotic contamination in wastewater demands innovative and sustainable remediation technologies. This paper presents a highly efficient photocatalytic material for water purification: a three-dimensional ultra-porous structure of interconnected GaN hollow microtetrapods (aero-GaN), its performance being further enhanced by noble metal nanodot functionalization. This novel aero-nanomaterial achieves more than 90 % of tetracycline degradation within 120 min under UV and solar irradiation, demonstrating its effectiveness in both static and dynamic flow conditions, with the potential for reuse and recyclability.

View Article and Find Full Text PDF

ZnCl-Doped Mesoporous Silica Nanoparticles Prepared via a Simple One-Pot Method for Highly Efficient Nitrate Removal.

Environ Res

December 2024

Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand. Electronic address:

Nitrate is a crucial nutrient in the natural nitrogen cycle. However, human activities have elevated nitrate levels in aquatic ecosystems beyond natural thresholds, posing risks to human health and the environment. In this work, ZnCl-doped mesoporous silica nanoparticles (ZnCl@MSN) were synthesized using a one-pot preparation method, leading to a streamlined process with reduced time and energy consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!