Obesity is a chronic, costly disease, and flavonoids such as quercetin have been proven to play protective roles against it. This study investigated the suppressive effect of quercetin-3-O-(6″-feruloyl)-β-D-galactopyranoside (QFG) on adipogenesis of 3T3-L1 preadipocytes. Quercetin-3-O-(6″-feruloyl)-β-D-galactopyranoside and quercetin were both extracted from Psidium guajava (Myrtaceae, commonly known as guava) leaves and were evaluated for their suppressive effect on adipogenesis by means of oil red O staining and triglyceride assay. It was shown that QFG inhibited adipogenesis in a dose- and time-dependent manner, and it exerted a stronger effect than did quercetin at the same concentration. Quantitative real-time polymerase chain reaction and western blotting were conducted to further examine the differentiation expression of marker genes and transcriptional factors. Both mRNA and protein expression of the key adipogenic transcriptional factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT (cytidine-cytidine-adenosine-adenosine-thymidine)/enhancer-binding protein alpha (C/EBPα), were inhibited by QFG. Moreover, the mRNA expression patterns of key participants in the Wnt-β-catenin pathway were not altered during the QFG-induced adipogenesis inhibition. These results suggest that QFG effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of PPARγ and C/EBPα and, probably, via a Wnt-β-catenin independent pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.3604DOI Listing

Publication Analysis

Top Keywords

adipogenesis 3t3-l1
8
3t3-l1 preadipocytes
8
down-regulation pparγ
8
pparγ c/ebpα
8
transcriptional factors
8
adipogenesis
6
suppressive effects
4
effects quercetin-3-o-6″-feruloyl-β-d-galactopyranoside
4
quercetin-3-o-6″-feruloyl-β-d-galactopyranoside adipogenesis
4
preadipocytes down-regulation
4

Similar Publications

GRK5 is required for adipocyte differentiation through ERK activation.

Int J Obes (Lond)

January 2025

Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, 27101, USA.

Previous studies have identified G protein-coupled receptor (GPCR) kinase 5 (GRK5) as a genetic factor contributing to obesity pathogenesis, but the underlying mechanism remains unclear. We demonstrate here that Grk5 mRNA is more abundant in stromal vascular fractions of mouse white adipose tissue, the fraction that contains adipose progenitor cells, or committed preadipocytes, than in adipocyte fractions. Thus, we generated a GRK5 knockout (KO) 3T3-L1 preadipocyte to further investigate the mechanistic role of GRK5 in regulating adipocyte differentiation.

View Article and Find Full Text PDF

fruit extract preadipocyte differentiation inhibition in 3T3-L1 cells.

J Taibah Univ Med Sci

December 2024

Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.

Objective: Concerns over the increasing number of obese individuals and the associated health risks have prompted therapeutic option explorations. Similarly, this study aimed to establish fruit extract (SCFE) anti-adipogenic attributes in 3T3-L1 cells.

Methods: The polyphenolic compounds in SCFE were identified with Reverse phase-high performance liquid chromatography (RP-HPLC).

View Article and Find Full Text PDF

Objectives: MicroRNAs (miRNAs) play a crucial role in the onset and progress of obesity. The inflammation of adipose tissue is deemed causative of the complications associated with obesity. This study delved into the potential mechanisms of miRNA-mediated SIRT1 regulation and inflammatory factors modulation in 3T3-L1 cells.

View Article and Find Full Text PDF

Chronic low-dose REV-ERBs agonist SR9009 mitigates constant light-induced weight gain and insulin resistance via adipogenesis modulation.

Biomed J

January 2025

Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan. Electronic address:

Background: Obesity and circadian rhythm disruption are significant global health concerns, contributing to an increased risk of metabolic disorders. Both adipose tissue and circadian rhythms play critical roles in maintaining energy homeostasis, and their dysfunction is closely linked to obesity. This study aimed to assess the effects of chronic low-dose SR9009, a REV-ERB ligand, on circadian disruption induced by constant light exposure in mice.

View Article and Find Full Text PDF

Obesity, a major risk factor for various metabolic diseases, often results in dysfunctional white adipose tissue and altered adipogenesis leading to ectopic fat accumulation, inflammation, and insulin resistance. On the other hand, cashew (Anacardium occidentale L.) nut worldwide consumption and production is increasing steadily, which augments the mass of byproducts to be discarded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!