5-Lipoxygenase (5-LOX) has been implicated in the development and progression of lung, pancreatic and esophageal cancers. However, its role in hepatocellular carcinoma (HCC) remains unclear. This study aimed to explore the role of 5-LOX in the pathogenesis of HCC. The expression of 5-LOX was detected in human HCC, HepG2 cells and diethylnitrosamine (DEN)-induced rat HCC using immunohistochemistry (IHC) staining or reverse transcriptase-polymerase chain reaction. Apoptosis in rat HCC was evaluated by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) assay. Cell viability and apoptosis were determined in HepG2 cells by MTT assay and flow cytometry, respectively. IHC staining showed that the 5-LOX protein was highly expressed in human HCC, HepG2 cells and rat HCC, but not in the normal liver tissues. 5-LOX mRNA expression in human and rat HCC was also significantly increased compared to normal liver tissues. Zileuton, a 5-LOX inhibitor, reduced the nodule incidence and the mean number of nodules per nodule-bearing liver in DEN-induced rats. Further study using TUNEL assay showed that zileuton treatment induced apoptosis in the liver as the result of inhibition on 5-LOX levels. This result is consistent with our observation of significantly higher apoptotic indices in rats treated with DEN/zileuton, which were significantly higher compared to those from the control groups. In addition, zileuton reduced cell viability and induced apoptosis in a concentration- and time-dependent manner as detected using HepG2 cells in our in vitro analysis. In conclusion, 5-LOX is expressed in HCC, and the inhibition of 5-LOX blocks the development of HCC via the induction of apoptosis in tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2011.547DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
16
rat hcc
16
hcc
10
5-lox
9
hepatocellular carcinoma
8
human hcc
8
hcc hepg2
8
ihc staining
8
tunel assay
8
cell viability
8

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) necessitates innovative prognostic biomarkers and therapeutic targets. By investigating PNMA1 in HCC via the TCGA and GEO databases and our clinical data, we found that its overexpression is associated with worse survival. The relevance of PNMA1 extends to immune factors such as M1 macrophages, CD8 T cells, and immune checkpoints.

View Article and Find Full Text PDF

In this study, we delve into the intrinsic mechanisms of cell communication in hepatocellular carcinoma (HCC). Initially, employing single-cell sequencing, we analyze multiple malignant cell subpopulations and cancer-associated fibroblast (CAF) subpopulations, revealing their interplay through receptor-ligand interactions, with a particular focus on SPP1. Subsequently, employing unsupervised clustering analysis, we delineate two clusters, C1 and C2, and compare their infiltration characteristics using various tools and metrics, uncovering heightened cytotoxicity and overall invasion abundance in C1.

View Article and Find Full Text PDF

Background: Pyroptosis is closely associated with chemotherapeutic drugs and immune response. Here, we investigated whether oxaliplatin, a key drug in FOLFOX-hepatic artery infusion chemotherapy (FOLFOX-HAIC), induces pyroptosis in hepatoma cells and enhances antitumor immunity after tumor cell death.

Methods: Hepatoma cells were treated with oxaliplatin.

View Article and Find Full Text PDF

A series of novel isatin-oxime ether derivatives were designed, synthesized and characterized by H NMR and C NMR and HRMS. These compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (A549, HepG2 and Hela) by MTT assay. According to the experimental results, compounds 6a (IC = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!