Fracture Toughness of Veneering Ceramics for Fused to Metal (PFM) and Zirconia Dental Restorative Materials.

J Res Natl Inst Stand Technol

American Dental Association Foundation, Paffenberger Research Center, National Institute of Standards and Technology, Gaithersburg, MD.

Published: October 2010

Veneering ceramics designed to be used with modern zirconia framework restorations have been reported to fracture occasionally in vivo. The fracture toughness of such veneering ceramics was measured and compared to that of conventional feldspathic porcelain veneering ceramics for metal framework restorations. The fracture toughness of the leucite free veneer was measured to be 0.73 MPa m ± 0.02 MPa m, which is less than that for the porcelain fused to metal (PFM) veneering ceramic: 1.10 MPa ± 0.2 MPa. (Uncertainties are one standard deviation unless otherwise noted.) The surface crack in flexure (SCF) method was suitable for both materials, but precrack identification was difficult for the leucite containing feldspathic porcelain PFM veneer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152300PMC
http://dx.doi.org/10.6028/jres.115.024DOI Listing

Publication Analysis

Top Keywords

veneering ceramics
16
fracture toughness
12
toughness veneering
8
fused metal
8
metal pfm
8
framework restorations
8
feldspathic porcelain
8
veneering
5
fracture
4
ceramics
4

Similar Publications

Effect of different restorative design and materials on stress distribution in cracked teeth: a finite element analysis study.

BMC Oral Health

January 2025

Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.

Objectives: To compare the stress distribution and crack propagation in cracked mandibular first molar restored with onlay, overlay, and two types of occlusal veneers using two different CAD/CAM materials by Finite Element Analysis (FEA).

Materials And Methods: A mandibular first molar was digitized using a micro CT scanning system in 2023. Three-dimensional dynamic scan data were transformed, and a 3D model of a cracked tooth was generated.

View Article and Find Full Text PDF

Objective: To analyze the impact of the translucency/opacity of two commercial brands of resin cements and different translucency of lithium disilicate on the masking ability of saturated substrates.

Methods: 120 samples (n = 5) were prepared using 0.5 mm lithium disilicate (IPS e.

View Article and Find Full Text PDF

Objective: Investigation of the mechanical properties of occlusal veneers made from zirconia with varying translucency, bonded to different tooth substrates.

Materials And Methods: Sixty-four extracted molars were divided into two groups: preparation within enamel (E) or extending into dentin (D). Veneers were milled from four zirconia ceramics (n = 8): 5Y-TZP (HT), a multilayer of 5 and 3Y-TZP (GT), 3Y-TZP (LT), and 4Y-TZP (MT).

View Article and Find Full Text PDF

Fracture Resistance of Chairside CAD/CAM Lithium Disilicate Partial and Full Coverage Crowns and Veneers for Maxillary Canines.

Oper Dent

January 2025

Nathaniel C Lawson, DDS, PhD, director of Master of Science in Dental Biomaterials program and associate professor, Department of Clinical and Community Sciences, University of Alabama at Birmingham School of Dentistry, Birmingham, AL, USA.

Objective: This study aimed to assess the fracture resistance of chairside computer assisted design and computer assisted manufacturing (CAD-CAM) lithium disilicate partial and full-coverage crowns and veneers for maxillary canines.

Methods And Materials: Forty-eight restorations for maxillary right canines (12 per group) were designed as follows: (1) partial crown with finish line in the upper middle third; (2) partial crown with finish line in the lower middle third; (3) traditional labial veneer; and (4) traditional full-coverage crown. Restorations were fabricated out of lithium disilicate (Amber Mill, Hassbio) using a chairside CAD-CAM system (Cerec Dentsply Sirona).

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates the fracture strength of 1 mm-thick CAD/CAM occlusal veneers made from lithium disilicate (LD) and resin nanoceramics (RNC) to assess their viability in dental restoration.
  • Using a novel testing protocol, the RNC group demonstrated a significantly higher load-bearing capacity compared to the LD group, indicating better durability under stress.
  • Both materials experienced similar crack patterns during testing, emphasizing the importance of understanding mechanical properties for ensuring the longevity of dental restorations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!