The anti-inflammatory, antifibrotic, and antiproteinuric properties of vitamin D have been defined in studies using active vitamin D analogs. In this prospective observational study we determined whether nutritional vitamin D repletion can have additional beneficial effects in patients with type 2 diabetic nephropathy already established on renin-angiotensin-aldosterone system inhibition. During a 7-month period, 63 patients were enrolled and those with low levels of 25(OH)D were treated with oral cholecalciferol for 4 months. Baseline serum 25(OH)D and 1,25(OH)(2)D showed no significant correlation with baseline urinary MCP-1, TGF-β1, or albuminuria measured as the urinary albumin-to-creatinine ratio. Of the 63 patients, 54 had insufficient or deficient levels of serum 25(OH)D and 49 complied with cholecalciferol therapy and follow-up. Both 25(OH)D and 1,25(OH)(2)D were significantly increased at 2 and 4 months of treatment. Albuminuria and urinary TGF-β1 decreased significantly at both time points compared to their baseline values, while urinary MCP-1 did not change. Thus, in the short term, dietary vitamin D repletion with cholecalciferol had a beneficial effect in delaying the progression of diabetic nephropathy above that due to established renin-angiotensin-aldosterone system inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ki.2011.224DOI Listing

Publication Analysis

Top Keywords

diabetic nephropathy
12
nephropathy established
12
established renin-angiotensin-aldosterone
12
renin-angiotensin-aldosterone system
12
system inhibition
12
oral cholecalciferol
8
albuminuria urinary
8
urinary tgf-β1
8
patients type
8
type diabetic
8

Similar Publications

Human amniotic epithelial stem cells, a potential therapeutic approach for diabetes and its related complications.

Hum Cell

January 2025

Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications.

View Article and Find Full Text PDF

Diabetic kidney disease is a leading cause of kidney failure worldwide and is easily detectable with screening examination. Diabetes causes hyperfiltration and activation of the renin-angiotensin aldosterone system by hemodynamic changes within the nephron, which perpetuates damaging physiology. Diagnosis is often clinical after detection of heavy proteinuria in a patient with diabetes,but can be confirmed by observation of histologic stages on kidney biopsy.

View Article and Find Full Text PDF

Xanthohumol attenuates TXNIP-mediated renal tubular injury in vitro and in vivo diabetic models.

J Nat Med

January 2025

Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.

Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia.

View Article and Find Full Text PDF

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!